Page 181 - Read Online
P. 181

Page 28 of 29                                                Dastidar et al. Vessel Plus 2020;4:14  I  http://dx.doi.org/10.20517/2574-1209.2019.36

                   2020]
               165. US-FDA. Caprelsa Approval History. Available from: https://www.drugs.com/history/caprelsa.html [Last accessed on 12 Apr 2020]
               166. US-FDA. FDA Approves Zaltrap. Available from: https://www.drugs.com/newdrugs/fda-approves-zaltrap-metastatic-colorectal-
                   cancer-3413.html [Last accessed on 12 Apr 2020]
               167. Peruzzi G, Sinibaldi G, Silvani G, Ruocco G, Casciola CM. Perspectives on cavitation enhanced endothelial layer permeability. Colloids
                   Surf B Biointerfaces 2018;168:83-93.
               168. Sutton JT, Haworth KJ, Pyne-Geithman G, Holland CK. Ultrasound-mediated drug delivery for cardiovascular disease. Expert Opin Drug
                   Deliv 2013;10:573-92.
               169. Wu M, Wang Y, Wang Y, Zhang M, Luo Y, et al. Paclitaxel-loaded and A10-3.2 aptamer-targeted poly(lactide-co-glycolic acid)
                   nanobubbles for ultrasound imaging and therapy of prostate cancer. Int J Nanomedicine 2017;12:5313-30.
               170. Fan CH, Wang TW, Hsieh YK, Wang CF, Gao Z, et al. Enhancing boron uptake in brain glioma by a boron-polymer/microbubble
                   complex with focused ultrasound. ACS Appl Mater Interfaces 2019;11:11144-56.
               171. Cao Y, Chen Y, Yu T, Guo Y, Liu F, et al. Drug release from phase-changeable nanodroplets triggered by low-intensity focused ultrasound.
                   Theranostics 2018;8:1327-39.
               172. Zhang C, Huang P, Zhang Y, Chen J, Shentu W, et al. Anti-tumor efficacy of ultrasonic cavitation is potentiated by concurrent delivery of
                   anti-angiogenic drug in colon cancer. Cancer Lett 2014;347:105-13.
               173. Zhao YZ, Lin Q, Wong HL, Shen XT, Yang W, et al. Glioma-targeted therapy using Cilengitide nanoparticles combined with UTMD
                   enhanced delivery. J Control Release 2016;224:112-25.
               174. Park J, Aryal M, Vykhodtseva N, Zhang YZ, McDannold N. Evaluation of permeability, doxorubicin delivery, and drug retention in a rat
                   brain tumor model after ultrasound-induced blood-tumor barrier disruption. J Control Release 2017;250:77-85.
               175. Theek B, Baues M, Ojha T, Möckel D, Veettil SK, et al. Sonoporation enhances liposome accumulation and penetration in tumors with
                   low EPR. J Control Release 2016;231:77-85.
               176. Yan F, Li L, Deng Z, Jin Q, Chen J, et al. Paclitaxel-liposome-microbubble complexes as ultrasound-triggered therapeutic drug delivery
                   carriers. J Control Release 2013;166:246-55.
               177. Meng M, Gao J, Wu C, Zhou X, Zang X, et al. Doxorubicin nanobubble for combining ultrasonography and targeted chemotherapy of
                   rabbit with VX2 liver tumor. Tumour Biol 2016;37:8673-80.
               178. Kong G, Dewhirst MW. Hyperthermia and liposomes. Int J Hyperthermia 1999;15:345-70.
               179. Ghosh Dastidar D, Chakrabarti G, Chapter 6 - Thermoresponsive Drug Delivery Systems, Characterization and Application. In:
                   Mohapatra SS, Ranjan S, Dasgupta N, Mishra RK, Thomas S, editors. Applications of Targeted Nano Drugs and Delivery Systems.
                   Amsterdam: Elsevier; 2019. pp 133-55.
               180. Elming PB, Sørensen BS, Oei AL, Franken NAP, Crezee J, et al. Hyperthermia: the optimal treatment to overcome radiation resistant
                   hypoxia. Cancers (Basel) 2019;11:60.
               181. Kong G, Braun RD, Dewhirst MW. Hyperthermia enables tumor-specific nanoparticle delivery: effect of particle size. Cancer Res
                   2000;60:4440-5.
               182. Noguchi A, Takahashi T, Yamaguchi T, Kitamura K, Noguchi A, et al. Enhanced tumor localization of monoclonal antibody by treatment
                   with kininase II inhibitor and angiotensin II. Jpn J Cancer Res 1992;83:240-3.
               183. Liu P, Guo B, Wang S, Ding J, Zhou W. A thermo-responsive and self-healing liposome-in-hydrogel system as an antitubercular drug
                   carrier for localized bone tuberculosis therapy. Int J Pharm 2019;558:101-9.
               184. Dai M, Wu C, Fang HM, Li L, Yan JB, et al. Thermo-responsive magnetic liposomes for hyperthermia-triggered local drug delivery. J
                   Microencapsul 2017;34:408-15.
               185. Maekawa-Matsuura M, Fujieda K, Maekawa Y, Nishimura T, Nagase K, et al. LAT1-targeting thermoresponsive liposomes for effective
                   cellular uptake by cancer cells. ACS Omega 2019;4:6443-51.
               186. Zhou Q, You C, Ling Y, Wu H, Sun B. pH and thermo dual stimulus-responsive liposome nanoparticles for targeted delivery of platinum-
                   acridine hybrid agent. Life Sci 2019;217:41-8.
               187. Dai M, Wu C, Fang HM, Li L, Yan JB, et al. Thermo-responsive magnetic liposomes for hyperthermia-triggered local drug delivery. J
                   Microencapsul 2017;34:408-15.
               188. Shi D, Mi G, Shen Y, Webster TJ. Glioma-targeted dual functionalized thermosensitive Ferri-liposomes for drug delivery through an in
                   vitro blood-brain barrier. Nanoscale 2019;11:15057-71.
               189. Chang R, Tsai WB. Fabrication of photothermo-responsive drug-loaded nanogel for synergetic cancer therapy. Polymers (Basel)
                   2018;10:1098.
               190. Singh A, Vaishagya K, K Verma R, Shukla R. Temperature/pH-triggered PNIPAM-based smart nanogel system loaded with anastrozole
                   delivery for application in cancer chemotherapy. AAPS Pharm Sci Tech 2019;20:213.
               191. Chen J, Wu M, Veroniaina H, Mukhopadhyay S, Li J, et al. Poly (N-isopropylacrylamide) derived nanogels demonstrated thermosensitive
                   self-assembly and GSH-triggered drug release for efficient tumor therapy. Polymer Chem 2019;10:4031-41.
               192. Sreerenganathan M, Mony U, Rangasamy J. Thermo-responsive fibrinogen nanogels: a viable thermo-responsive drug delivery agent for
                   breast cancer therapy? Nanomedicine (Lond) 2014;9:2721-3.
               193. Kim JH, Lee T. Thermo-responsive hydrogel-coated nanoshells for in vivo drug delivery. J Biomed Pharmaceutical Engineering
                   2008;21:29-35.
               194. Wang C, Li Y, Ma Y, Gao Y, Dong D, et al. Thermo responsive polymeric nanoparticles based on poly(2-oxazoline)s and tannic acid.
                   Journal of Polymer Science Part A: Polymer Chemistry 2018;56:1520-7.
   176   177   178   179   180   181   182   183   184   185   186