Page 179 - Read Online
P. 179

Page 26 of 29                                                Dastidar et al. Vessel Plus 2020;4:14  I  http://dx.doi.org/10.20517/2574-1209.2019.36

               109. Lin YW, Raj EN, Liao WS, Lin J, Liu KK, et al. Co-delivery of paclitaxel and cetuximab by nanodiamond enhances mitotic catastrophe
                   and tumor inhibition. Sci Rep 2017;7:9814.
               110.  Li F, Danquah M, Singh S, Wu H, Mahato RI. Paclitaxel- and lapatinib-loaded lipopolymer micelles overcome multidrug resistance in
                   prostate cancer. Drug Deliv Transl Res 2011;1:420-8.
               111.  Yang Z, Xiang B, Dong D, Wang Z, Li J, et al. Dual receptor-specific peptides modified liposomes as VEGF siRNA vector for tumor-
                   targeting therapy. Curr Gene Ther 2014;14:289-99.
               112.  Shein SA, Kuznetsov II, Abakumova TO, Chelushkin PS, Melnikov PA, et al. VEGF- and VEGFR2-targeted liposomes for cisplatin
                   delivery to glioma cells. Mol Pharm 2016;13:3712-23.
               113.  Yao Y, Wang T, Liu Y, Zhang N. Co-delivery of sorafenib and VEGF-siRNA via pH-sensitive liposomes for the synergistic treatment of
                   hepatocellular carcinoma. Artif Cells Nanomed Biotechnol 2019;47:1374-83.
               114.  Chen WH, Yang Sung S, Fadeev M, Cecconello A, Nechushtai R, et al. Targeted VEGF-triggered release of an anti-cancer drug from
                   aptamer-functionalized metal-organic framework nanoparticles. Nanoscale 2018;10:4650-7.
               115.  Chen J, Sun X, Shao R, Xu Y, Gao J, et al. VEGF siRNA delivered by polycation liposome-encapsulated calcium phosphate nanoparticles
                   for tumor angiogenesis inhibition in breast cancer. Int J Nanomedicine 2017;12:6075-88.
               116.  Doddapaneni R, Patel K, Owaid IH, Singh M. Tumor neovasculature-targeted cationic PEGylated liposomes of gambogic acid for the
                   treatment of triple-negative breast cancer. Drug Deliv 2016;23:1232-41.
               117.  Yang ZZ, Li JQ, Wang ZZ, Dong DW, Qi XR. Tumor-targeting dual peptides-modified cationic liposomes for delivery of siRNA and
                   docetaxel to gliomas. Biomaterials 2014;35:5226-39.
               118.  Yanagisawa M, Yorozu K, Kurasawa M, Nakano K, Furugaki K, et al. Bevacizumab improves the delivery and efficacy of paclitaxel.
                   Anticancer Drugs 2010;21:687-94.
               119.  Dragovich T, Laheru D, Dayyani F, Bolejack V, Smith L, et al. Phase II trial of vatalanib in patients with advanced or metastatic
                   pancreatic adenocarcinoma after first-line gemcitabine therapy (PCRT O4-001). Cancer Chemother Pharmacol 2014;74:379-87.
               120. Lei M, Ma G, Sha S, Wang X, Feng H, et al. Dual-functionalized liposome by co-delivery of paclitaxel with sorafenib for synergistic
                   antitumor efficacy and reversion of multidrug resistance. Drug Deliv 2019;26:262-72.
               121. Yang X, Li H, Qian C, Guo Y, Li C, et al. Near-infrared light-activated IR780-loaded liposomes for anti-tumor angiogenesis and
                   Photothermal therapy. Nanomedicine 2018;14:2283-94.
               122. He J, Xiao H, Li B, Peng Y, Li X, et al. The programmed site-specific delivery of the angiostatin sunitinib and chemotherapeutic
                   paclitaxel for highly efficient tumor treatment. J Mater Chem B 2019;7:4953-62.
               123. Szlachcic A, Pala K, Zakrzewska M, Jakimowicz P, Wiedlocha A, et al. FGF1-gold nanoparticle conjugates targeting FGFR efficiently
                   decrease cell viability upon NIR irradiation. Int J Nanomedicine 2012;7:5915-27.
               124. Dehghan Kelishady P, Saadat E, Ravar F, Akbari H, Dorkoosh F. Pluronic F127 polymeric micelles for co-delivery of paclitaxel and
                   lapatinib against metastatic breast cancer: preparation, optimization and in vitro evaluation. Pharm Dev Technol 2015;20:1009-1017.
               125. Zajdel A, Wilczok A, Jelonek K, Musiał-Kulik M, Foryś A, et al. Cytotoxic effect of paclitaxel and lapatinib co-delivered in polylactide-
                   co-poly(ethylene glycol) micelles on HER-2-negative breast cancer cells. Pharmaceutics 2019;1:169.
               126. Zhou Z, Jafari M, Sriram V, Kim J, Lee JY, et al. Delayed sequential co-delivery of gefitinib and doxorubicin for targeted combination
                   chemotherapy. Mol Pharm 2017;14:4551-9.
               127. Chun PY, Feng FY, Scheurer AM, Davis MA, Lawrence TS, et al. Synergistic effects of gemcitabine and gefitinib in the treatment of head
                   and neck carcinoma. Cancer Res 2006;66:981-8.
               128. Chen D, Zhang F, Wang J, He H, Duan S, et al. Biodegradable nanoparticles mediated co-delivery of erlotinib (ELTN) and fedratinib
                   (FDTN) toward the treatment of ELTN-resistant non-small cell lung cancer (NSCLC) via suppression of the JAK2/STAT3 signaling
                   pathway. Front Pharmacol 2018;9:1214.
               129. Zajdel A, Wilczok A, Jelonek K, Musiał-Kulik M, Foryś A, et al. Cytotoxic effect of paclitaxel and lapatinib co-delivered in polylactide-
                   co-poly(ethylene glycol) micelles on HER-2-negative breast cancer cells. Pharmaceutics 2019;11:169.
               130. Ravar F, Saadat E, Kelishadi PD, Dorkoosh FA. Liposomal formulation for co-delivery of paclitaxel and lapatinib, preparation,
                   characterization and optimization. J Liposome Res 2016;26:175-87.
               131. Yang Y, Huang Z, Li J, Mo Z, Huang Y, et al. PLGA porous microspheres dry powders for codelivery of afatinib-loaded solid lipid
                   nanoparticles and paclitaxel: novel therapy for EGFR tyrosine kinase inhibitors resistant nonsmall cell lung cancer. Adv Healthc Mater
                   2019;8:e1900965.
               132. Gupta B, Poudel BK, Regmi S, Pathak S, Ruttala HB, et al. Paclitaxel and erlotinib-co-loaded solid lipid core nanocapsules: assessment
                   of physicochemical characteristics and cytotoxicity in non-small cell lung cancer. Pharm Res 2018;35:96.
               133. Vaccaro V, Bria E, Sperduti I, Gelibter A, Moscetti L, et al. First-line erlotinib and fixed dose-rate gemcitabine for advanced pancreatic
                   cancer. World J Gastroenterol 2013;19:4511-9.
               134. He Y, Su Z, Xue L, Xu H, Zhang C. Co-delivery of erlotinib and doxorubicin by pH-sensitive charge conversion nanocarrier for
                   synergistic therapy. J Control Release 2016;229:80-92.
               135. Chen LX, Ni XL, Zhang H, Wu M, Liu J, et al. Preparation, characterization, in vitro and in vivo anti-tumor effect of thalidomide
                   nanoparticles on lung cancer. Int J Nanomedicine 2018;13:2463-76.
               136. Chantarasrivong C, Higuchi Y, Tsuda M, Yamane Y, Hashida M, et al. Sialyl LewisX mimic-decorated liposomes for anti-angiogenic
                   everolimus delivery to E-selectin expressing endothelial cells. RSC Advances 2019;9:20518-27.
               137. Houdaihed L, Evans JC, Allen C. Codelivery of paclitaxel and everolimus at the optimal synergistic ratio: a promising solution for the
                   treatment of breast cancer. Mol Pharm 2018;15:3672-81.
   174   175   176   177   178   179   180   181   182   183   184