Page 247 - Read Online
P. 247

Martínez et al.                                                                                                                   Cardiomyocyte energetic changes in ischemia and arrythmogenesis

               2012;448:43-53.                                   O’Gorman E, Rück A,  Brdiczka D.  Some new aspects of creatine
           35.  Tate  M, Grieve D, Ritchie  R. Are targeted  therapies  for diabetic   kinase (CK): compartmentation, structure, function and regulation for
               cardiomyopathy on the horizon? Clin Sci 2017;131:897-915.  cellular and mitochondrial bioenergetics and physiology. Biofactors
           36.  Bairwa S, Parajuli N, Dyck J. The role of AMPK in cardiomyocyte   1998;8:229-34.
               health and survival. Biochim Biophys Acta 2016;1862:2199-210.  56.  Weiss  R,  Gerstenblith  G,  Bottomley  P.  ATP  flux  through  creatine
           37.  Vázquez-Carrera M. Unraveling the effects of PPARβ/δ on insulin   kinase in the normal, stressed, and failing human heart. Proc Nat Acad
               resistance  and cardiovascular  disease.  Trends Endocrinol  Metab   Sci U S A 2005;102:808-13.
               2016;27:319-34.                                57.  Fowler ED, Benoist D, Drinkhill MJ, Stones R, Helmes M, Wüst RC,
           38.  Lopaschuk  GD, Ussher JR, Folmes  CD, Jaswal JS, Stanley   Stienen GJ, Steele DS, White E. Decreased creatine kinase is linked
               WC.Myocardial fatty acid metabolism in health and disease. Physiol   to diastolic dysfunction in rats with right heart failure  induced by
               Rev 2010;90:207-58.                               pulmonary artery hypertension. J Mol Cell Cardiol 2015;86:1-8.
           39.  Huss JM, Kelly DP. Nuclear receptor signaling and cardiac energetics.   58.  Bottomley  PA, Panjrath  GS, Lai  S, Hirsch GA, Wu  K, Najjar  SS,
               Circ Res 2004;95:568-78.                          Steinberg  A, Gerstenblith  G, Weiss RG. Metabolic  rates of ATP
           40.  Barlaka E, Galatou E, Mellidis K, Ravingerova T, Lazou A. Role of   transfer through creatine  kinase (CK Flux) predict  clinical  heart
               pleiotropic properties of peroxisome proliferator-activated receptors   failure events and death. Sci Transl Med 2013;5:215re3.
               in the heart: focus on the nonmetabolic effects in cardiac protection.   59.  Kristjansson RP, Oddsson A, Helgason  H, Sveinbjornsson G,
               Cardiovasc Ther 2016;34:37-48.                    Arnadottir GA, Jensson BO, Jonasdottir A, Jonasdottir A, Bragi
           41.  Barlaka  E,  Ledvényiová  V,  Galatou  E,  Ferko  M,  Čarnická  S,   Walters  G,  Sulem  G, Oskarsdottir  A, Benonisdottir  S, Davidsson
               Ravingerová T, Lazou A. Delayed cardioprotective effects of WY-  OB, Masson G, Magnusson OT, Holm H, Sigurdardottir O, Jonsdottir
               14643 are  associated  with inhibition  of MMP-2 and modulation   I, Eyjolfsson GI, Olafsson I, Gudbjartsson DF, Thorsteinsdottir
               of  Bcl-2  family  proteins  through  PPAR-α  activation  in  rat  hearts   U, Sulem P, Stefansson  K. Common and rare variants associating
               subjected to global ischaemia-reperfusion. Can J Physiol Pharmacol   with serum levels of creatine kinase and lactate dehydrogenase. Nat
               2013;91:608-16.                                   Commun 2016;7:10572.
           42.  Sun W, Liu Q, Leng J, Zheng Y, Li J. The role of pyruvate   60.  Ventura-Clapier R, Garnier A, Veksler V. Energy metabolism in heart
               dehydrogenase complex in cardiovascular  diseases.  Life Sci   failure. J Physiol 2003;555:1-13.
               2015;121:97-103.                               61.  Kitzenberg D, Colgan SP, Glover LE. Creatine kinase in ischemic and
           43.  Mueckler  M, Thorens  B.  The  SLC2  (GLUT)  family  of  membrane   inflammatory disorders. Clin Transl Med 2016;5:31.
               transporters. Mol Asp Med 2013;34:121-38.      62.  Neubauer  S, Horn M, Cramer  M, Harre  K, Newell  JB, Peters  W,
           44.  Deng D, Yan  N. GLUT, SGLT,  and  SWEET:  structural  and   Pabst T, Ertl G,  Hahn D,  Ingwall JS,  Kochsiek K.  Myocardial
               mechanistic  investigations  of the  glucose transporters.  Protein  Sci   phosphocreatine-to-ATP ratio is a predictor of mortality in patients
               2016;25:546-58.                                   with dilated cardiomyopathy. Circulation 1997;96:2190-6.
           45.  Szablewski L. Glucose transporters in healthy heart and in cardiac   63.  Nakae I, Mitsunami K, Omura T, Yabe T, Tsutamoto  T, Matsuo
               disease. Int J Cardiol 2017;230:70-5.             S, Takahashi M, Morikawa S, Inubushi T, Nakamura Y, Kinoshita
           46.  Azevedo  PS, Minicucci  MF, Santos PP, Paiva  SA, Zornoff  LA.   M, Horie M. Proton magnetic  resonance spectroscopy can detect
               Energy metabolism in cardiac remodeling and heart failure. Cardiol   creatine depletion associated with the progression of heart failure in
               Rev 2013;21:135-40.                               cardiomyopathy. J Am Coll Cardiol 2003;42:1587-93.
           47.  Lopaschuk GD. Metabolic modulators in heart disease: past, present,   64.  Hue L, Taegtmeyer H. The Randle cycle revisited: a new head for an
               and future. Can J Cardiol 2017;33:838-49.         old hat. Am J Physiol Endocrinol Metab 2009;297:E578-91.
           48.  Fillmore  N, Lopaschuk GD. Targeting  mitochondrial  oxidative   65.  Fukushima A, Milner K, Gupta A, Lopaschuk GD. Myocardial energy
               metabolism  as an  approach  to  treat  heart  failure.  Biochim  Biophys   substrate metabolism in heart failure: from pathways to therapeutic
               Acta 2013;1833:857-65.                            targets. Curr Pharm Des 2015;21:3654-64.
           49.  Luptak I, Yan J, Cui L, Jain M, Liao R, Tian R. Long-term effects   66.  Aroor A, Mandavia C, Sowers J. Insulin resistance and heart failure:
               of increased glucose entry on mouse hearts during normal aging and   molecular mechanisms. Heart Fail Clin 2012;8:609-17.
               ischemic stress. Circulation 2007;116:901-9.   67.  Breckenridge RA, Piotrowska I, Ng KE, Ragan TJ, West JA, Kotecha
           50.  Liao R, Jain M, Cui L, D’Agostino J, Aiello F, Luptak I, Ngoy S,   S, Towers N, Bennett M, Kienesberger PC, Smolenski RT, Siddall
               Mortensen RM, Tian R. Cardiac-specific overexpression of GLUT1   HK,  Offer  JL,  Mocanu  MM,  Yelon  DM,  Dyck  JR,  Griffin  JL,
               prevents the development  of heart failure attributable  to pressure   Abramov AY, Gould AP, Mohun TJ. Hypoxic regulation of hand1
               overload in mice. Circulation 2002;106:2125-31.   controls the fetal-neonatal switch in cardiac metabolism. PLoS Biol
           51.  Domenighetti  AA, Danes VR, Curl  CL,  Favaloro  JM, Proietto  J,   2013;11:e1001666.
               Delbridge  LM.  Targeted  GLUT-4  deficiency  in  the  heart  induces   68.  Wende AR, Brahma MK,  McGinnis GR, Young  ME. Metabolic
               cardiomyocyte  hypertrophy and impaired  contractility  linked   origins of heart failure. JACC Basic Transl Sci 2017;2:297-310.
               with  Ca(2+)  and  proton  flux  dysregulation.  J Mol Cell Cardiol   69.  Wende AR, Kim J, Holland WL, Wayment BE, O’Neill BT, Tuinei J,
               2010;48:663-72.                                   Brahma MK, Pepin ME, McCrory MA, Luptak I, Halade GV, Litwin
           52.  Ashrafian  H,  Frenneaux  MP,  Opie  LH.  Metabolic  mechanisms  in   SE, Abel ED. Glucose transporter 4 (GLUT4) deficient hearts develop
               heart failure. Circulation 2007;116:434-48.       maladaptive  hypertrophy  in  response  to  physiologic  or  pathologic
           53.  Varma N, Eberli  FR, Apstein CS. Increased diastolic  chamber   stresses. Am J Physiol Heart Circ Physiol 2017;313:H1098-108.
               stiffness during demand ischemia: response to quick length change   70.  Wang J, Li Z, Wang Y, Zhang J, Zhao W, Fu M, Han X, Zhou J, Ge
               differentiates  rigor-activated  from calcium-activated  tension.   J. Qiliqiangxin enhances cardiac glucose metabolism and improves
               Circulation 2000;101:2185-92.                     diastolic  function in spontaneously hypertensive rats.  Evid Based
           54.  Guimarães-Ferreira  L. Role of the phosphocreatine  system on   Complement Alternat Med 2017;2017:3197320.
               energetic  homeostasis in  skeletal  and  cardiac  muscles.  Einstein   71.  Korvald C, Elvenes OP, Myrmel T.Myocardial substrate metabolism
               2014;12:126-31.                                   influences left ventricular energetics in vivo. Am J Physiol Heart Circ
           55.  Wallimann  T, Dolder M, Schlattner  U, Eder M, Hornemann T,   Physiol 2000;278:H1345-51.

                           Vessel Plus ¦ Volume 1 ¦ December 28, 2017                                     239
   242   243   244   245   246   247   248   249   250   251   252