Page 246 - Read Online
P. 246
Martínez et al. Cardiomyocyte energetic changes in ischemia and arrythmogenesis
thrombolysis and angioplasty, and very little practical 10. Kleber AG, Saffitz JE. Role of the intercalated disc in cardiac
value has been obtained from its study. Nonetheless, propagation and arrhythmogenesis. Front Physiol 2014;5:404.
the evidence suggesting metabolic causes for 11. Kurtenbach S, Kurtenbach S, Zoidl G. Gap junction modulation and
its implications for heart function. Front Physiol 2014;5:82.
arrhythmias grants a “resuscitation” of this cause [120] . 12. Veeraraghavan R, Poelzing S, Gourdie RG. Intercellular electrical
Indeed, further research is required in order to explore communication in the heart: a new, active role for the intercalated
and exploit the therapeutic implications of myocardial disk. Cell Commun Adhes 2014;21:161-7.
metabolism. 13. Rider O, Cox P, Tyler D, Clarke K, Neubauer S. Myocardial substrate
metabolism in obesity. Int J Obes (Lond) 2012;37:972-9.
DECLARATIONS 14. Carley AN, Taegtmeyer H, Lewandowski ED. Mechanisms linking
energy substrate metabolism to the function of the heart. Circ Res
2014;114:717-29.
Authors’ contributions 15. Doenst T, Nguyen TD, Abel ED. Cardiac metabolism in heart failure
- implications beyond ATP production. Circ Res 2013;113:709-24.
Article conception and design: M.S. Martínez, A. 16. Rosano G, Vitale C, Spoletini I. Metabolic approach to heart failure:
García the role of metabolic modulators. Egyptian Heart J 2015;67:177-81.
Acquisition and analysis of bibliographic information: 17. Long Q, Yang K, Yang Q. Regulation of mitochondrial ATP synthase
M.S. Martínez, A. García, E. Luzardo, L.C. Olivar in cardiac pathophysiology. Am J Cardiovasc Dis 2015;5:19-32.
Drafting of the manuscript: M.S. Martínez, M. Chávez- 18. Ingwall JS. Energy metabolism in heart failure and remodelling.
Castillo, J. Salazar Cardiovasc Res 2009;81:412-9.
Critical revision and final approval: V. Bermúdez, M. 19. Wang J, Guo T. Metabolic remodeling in chronic heart failure. J
Velasco, J.J. Rojas Quintero Zhejiang Univ Sci B 2013;14:688-95.
20. Goldberg IJ, Trent CM, Schulze PC. Lipid metabolism and toxicity in
the heart. Cell Metabolism 2012;15:805-12.
Financial support and sponsorship 21. Wolf P, Winhofer Y, Krššák M, Krebs M. Heart, lipids and hormones.
None. Endocr Connect 2017;6:R59-69.
22. Abumrad NA, Goldberg IJ. CD36 actions in the heart: lipids,
Conflicts of interest calcium, inflammation, repair and more? Biochim Biophys Acta
There are no conflicts of interest. 2016;1860:1442-9.
23. Fukushima A, Lopaschuk GD. Cardiac fatty acid oxidation in heart
failure associated with obesity and diabetes. Biochim Biophys Acta
Patient consent 2016;1861:1525-34.
Not applicable. 24. Fukushima A, Milner K, Gupta A, Lopaschuk GD. Acetylation control
of cardiac fatty acid β-oxidation and energy metabolism in obesity,
Ethics approval diabetes, and heart failure. Biochim Biophys Acta 2016;1862:2211-20.
Not applicable. 25. Fillmore N, Mori J, Lopaschuk GD. Mitochondrial fatty acid oxidation
alterations in heart failure, ischaemic heart disease and diabetic
cardiomyopathy. Br J Pharmacol 2014;171:2080-90.
REFERENCES 26. Glatz JF, Nabben M, Heather LC, Bonen A, Luiken JJ. Regulation of
the subcellular trafficking of CD36, a major determinant of cardiac
fatty acidutilization. Biochim Biophys Acta 2016;1861:1461-71.
1. D’Souza K, Nzirorera C, Kienesberger P. Lipid metabolism and signaling 27. Pepino M, Kuda O, Samovski D, Abumrad N. Structure-function
in cardiac lipotoxicity. Biochim Biophys Acta 2016;1861:1513-24. of CD36 and importance of fatty acid signal transduction in fat
2. Gillespie HS, Lin CC, Prutkin JM. Arrhythmias in structural heart metabolism. Ann Rev Nutr 2014;34:281-303.
disease. Curr Cardiol Rep 2014;16:510. 28. Glatz JF, Luiken JJ. From fat to FAT (CD36/SR-B2): understanding
3. Burton RA, Lee P, Casero R, Garny A, Siedlecka U, Schneider JE, the regulation of cellular fatty acid uptake. Biochimie 2017;136:21-6.
Kohl P, Grau V. Three-dimensional histology: tools and application 29. Chanda D, Luiken JJ, Glatz JF. Signaling pathways involved in
to quantitative assessment of cell-type distribution in rabbit heart. cardiac energy metabolism. FEBS Lett 2016;590:2364-74.
Europace 2014;16 Suppl 4:iv86-95. 30. Kim TT, Dyck JR. The role of CD36 in the regulation of myocardial
4. Maass K, Shekhar A, Lu J, Kang G, See F, Kim EE, Delgado C, Shen lipid metabolism. Biochim Biophys Acta 2016;1861:1450-60.
S, Cohen L, Fishman GI. Isolation and characterization of embryonic 31. Kim TT, Dyck JR. Is AMPK the savior of the failing heart? Trends
stem cell-derived cardiac Purkinje cells. Stem Cells 2015;33:1102-12. Endocrinol Metab 2015;26:40-8.
5. Vigmond EJ, Stuyvers BD. Modeling our understanding of the His- 32. Glatz JF, Angin Y, Steinbusch LK, Schwenk RW, Luiken JJ. CD36
Purkinje system. Prog Biophys Mol Biol 2016;120:179-88. as a target to prevent cardiac lipotoxicity and insulin resistance.
6. Yin Z, Ren J, Guo W. Sarcomeric protein isoform transitions in Prostaglandins Leukot Essent Fatty Acids 2013;88:71-7.
cardiac muscle: a journey to heart failure. Biochim Biophys Acta 33. Samovski D, Su X, Xu Y, Abumrad N, Stahl P. Insulin and AMPK
2015;1852:47-52. regulate FA translocase/CD36 plasma membrane recruitment in
7. Hu LY, Ackermann MA, Kontrogianni-Konstantopoulos A. The cardiomyocytes via Rab GAP AS160 and Rab8a RabGTPase. J Lipid
sarcomeric M-region: a molecular command center for diverse Res 2012;53:709-17.
cellular processes. Biomed Res Int 2015;2015:714197. 34. Angin Y, Steinbusch L, Simons P, Greulich S, Hoebers N, Douma K,
8. Katz A. Contractile proteins of the heart. Phys Rev 2016;50:63-158. van Zandvoort MA, Coumans WA, Wijnen W, Diamant M, Ouwens
9. Gaztañaga L, Marchlinski F, Betensky B. Mechanisms of cardiac DM, Glatz JF, Luiken JJ. CD36 inhibition prevents lipid accumulation
arrhythmias. Rev Esp Cardiol (Engl Ed) 2012;65:174-85. and contractile dysfunction in rat cardiomyocytes. Biochem J
238 Vessel Plus ¦ Volume 1 ¦ December 28, 2017