Page 187 - Read Online
P. 187

Page 20 of 21              Bradshaw et al. Vessel Plus 2023;7:35  https://dx.doi.org/10.20517/2574-1209.2023.121

               119.      Hanley PJ, Mickel M, Löffler M, Brandt U, Daut J. K ATP  channel-independent targets of diazoxide and 5-hydroxydecanoate in the
                    heart. J Physiol 2002;542:735-41.  DOI  PubMed  PMC
               120.      Dzeja PP, Bast P, Ozcan C, et al. Targeting nucleotide-requiring enzymes: implications for diazoxide-induced cardioprotection. Am J
                    Physiol Heart Circ Physiol 2003;284:1048-56.  DOI
               121.      Ockaili RA, Bhargava P, Kukreja RC. Chemical preconditioning with 3-nitropropionic acid in hearts: role of mitochondrial K
                                                                                                        ATP
                    channel. J Physiol Heart Circ Physiol 2001;280:2406-11.  DOI  PubMed
               122.      Busija DW, Katakam P, Rajapakse NC, et al. Effects of ATP-sensitive potassium channel activators diazoxide and BMS-191095 on
                    membrane potential and reactive oxygen species production in isolated piglet mitochondria. Brain Res Bull 2005;66:85-90.  DOI
               123.      Chouchani ET, Pell VR, Gaude E, et al. Ischaemic accumulation of succinate controls reperfusion injury through mitochondrial ROS.
                    Nature 2014;515:431-5.  DOI
               124.      Anastacio MM, Kanter EM, Keith AD, Schuessler RB, Nichols CG, Lawton JS. Inhibition of succinate dehydrogenase by diazoxide
                    is independent of the ATP-sensitive potassium channel subunit sulfonylurea type 1 receptor. J Am Coll Surg 2013;216:1144-9.  DOI
                    PubMed  PMC
                                                                                       2+
               125.      Eaton M, Hernandez LA, Schaefer S. Ischemic preconditioning and diazoxide limit mitochondrial Ca  overload during ischemia/
                    reperfusion: role of reactive oxygen species. Exp Clin Cardiol 2005;10:96-103.  PubMed  PMC
               126.      Ahmad T, Wang J, Velez AK, et al. Cardioprotective mechanisms of mitochondria-targeted S-nitrosating agent and adenosine
                    triphosphate-sensitive potassium channel opener are mutually exclusive. JTCVS Open 2021;8:338-54.  DOI  PubMed  PMC
               127.      Uchiyama Y, Otani H, Okada T, et al. Integrated pharmacological preconditioning in combination with adenosine, a mitochondrial
                    K   channel opener and a nitric oxide donor. J Thorac Cardiovasc Surg 2003;126:148-59.  DOI
                     ATP
               128.      Kim MY, Kim MJ, Yoon IS, et al. Diazoxide acts more as a PKC-epsilon activator, and indirectly activates the mitochondrial K
                                                                                                        ATP
                    channel conferring cardioprotection against hypoxic injury. Br J Pharmacol 2006;149:1059-70.  DOI  PubMed  PMC
               129.      Akao M, Ohler A, O’rourke B, Marbán E. Mitochondrial ATP-sensitive potassium channels inhibit apoptosis induced by oxidative
                    stress in cardiac cells. Circ Res 2001;88:1267-75.  DOI  PubMed
               130.      Yonemochi H, Ichinose M, Anan F, et al. Diazoxide-induced cardioprotection via DeltaPsim loss depending on timing of application.
                    Life Sci 2006;79:1906-12.  DOI
               131.      Mccully JD, Wakiyama H, Cowan DB, Federman M, Parker RA, Levitsky S. Diazoxide amelioration of myocardial injury and
                    mitochondrial damage during cardiac surgery. Ann Thorac Surg 2002;74:2138-46.  DOI  PubMed  PMC
               132.      Maslov LN, Popov SV, Naryzhnaya NV, et al. K   channels are regulators of programmed cell death and targets for the creation of
                                                    ATP
                    novel drugs against ischemia/reperfusion cardiac injury. Fundam Clin Pharmacol 2023;37:1020-49.  DOI
               133.      Davies JE, Digerness SB, Killingsworth CR, et al. Multiple treatment approach to limit cardiac ischemia-reperfusion injury. Ann
                    Thorac Surg 2005;80:1408-16.  DOI
               134.      Makepeace CM, Suarez-Pierre A, Kanter EM, Schuessler RB, Nichols CG, Lawton JS. Superior diastolic function with K ATP  channel
                    opener diazoxide in a novel mouse Langendorff model. J Surg Res 2018;227:186-93.  DOI  PubMed  PMC
               135.      Suarez-Pierre A, Lui C, Zhou X, et al. Diazoxide preserves myocardial function in a swine model of hypothermic cardioplegic arrest
                    and prolonged global ischemia. J Thorac Cardiovasc Surg 2022;163:e385-400.  DOI
               136.      Velez AK, Etchill E, Giuliano K, et al. ATP - sensitive potassium channel opener diazoxide reduces myocardial stunning in a porcine
                    regional with subsequent global ischemia model. J Am Heart Assoc 2022;11:e026304.  DOI  PubMed  PMC
               137.      Wang X, Wei M, Kuukasjärvi P, et al. Novel pharmacological preconditioning with diazoxide attenuates myocardial stunning in
                    coronary artery bypass grafting. Eur J Cardiothorac Surg 2003;24:967-73.  DOI
               138.      Deja MA, Malinowski M, Gołba KS, et al. Diazoxide protects myocardial mitochondria, metabolism, and function during cardiac
                    surgery: a double-blind randomized feasibility study of diazoxide-supplemented cardioplegia. J Thorac Cardiovasc Surg
                    2009;137:997-1004.  DOI
               139.      Ziganshin BA, Elefteriades JA. Deep hypothermic circulatory arrest. Ann Cardiothorac Surg 2013;2:303-15.  DOI  PubMed  PMC
               140.      Wang X, Yang F, Zhu J, Liu Y, Sun L, Hou X. Aortic arch surgery with hypothermic circulatory arrest and unilateral antegrade
                    cerebral perfusion: perioperative outcomes. J Thorac Cardiovasc Surg 2020;159:374-87.e4.  DOI
               141.      Bergeron EJ, Mosca MS, Aftab M, Justison G, Reece TB. Neuroprotection strategies in aortic surgery. Cardiol Clin 2017;35:453-65.
                    DOI  PubMed
               142.      Giuliano K, Etchill E, Velez AK, et al. Ketamine mitigates neurobehavioral deficits in a canine model of hypothermic circulatory
                    arrest. Semin Thorac Cardiovasc Surg 2023;35:251-8.  DOI  PubMed  PMC
                                                                        2+
                                                                                 +
               143.      Honrath B, Krabbendam IE, Culmsee C, Dolga AM. Small conductance Ca -activated K  channels in the plasma membrane,
                    mitochondria and the ER: pharmacology and implications in neuronal diseases. Neurochem Int 2017;109:13-23.  DOI  PubMed
               144.      Debska G, May R, Kicinska A, Szewczyk A, Elger CE, Kunz WS. Potassium channel openers depolarize hippocampal mitochondria.
                    Brain Res 2001;892:42-50.  DOI  PubMed
               145.      De Arriba S, Franke H, Pissarek M, Nieber K, Illes P. Neuroprotection by ATP-dependent potassium channels in rat neocortical brain
                    slices during hypoxia. Neurosci Lett 1999;273:13-6.  DOI  PubMed
               146.      Domoki F, Perciaccante JV, Veltkamp R, Bari F, Busija DW. Mitochondrial Potassium channel opener diazoxide preserves neuronal-
                    vascular function after cerebral ischemia in newborn pigs. Stroke 1999;30:2713-9.  DOI  PubMed
               147.      Barreiro CJ, Williams JA, Fitton TP, et al. Noninvasive assessment of brain injury in a canine model of hypothermic circulatory arrest
                    using magnetic resonance spectroscopy. Ann Thorac Surg 2006;81:1593-8.  DOI
   182   183   184   185   186   187   188   189   190   191   192