Page 183 - Read Online
P. 183

Page 16 of 21              Bradshaw et al. Vessel Plus 2023;7:35  https://dx.doi.org/10.20517/2574-1209.2023.121


               REFERENCES
                                     +
               1.       Noma A. ATP-regulated K  channels in cardiac muscle. Nature 1983;305:147-8.  DOI  PubMed
               2.       Aziz Q, Thomas AM, Gomes J, et al. The ATP-sensitive potassium channel subunit, Kir6.1, in vascular smooth muscle plays a major
                    role in blood pressure control vascular biology. Vasc Biol 2014;64:523-9.  DOI
               3.       Li A, Knutsen RH, Zhang H, et al. Hypotension due to Kir6.1 gain-of-function in vascular smooth muscle. J Am Heart Assoc
                    2013;2:e000365.  DOI  PubMed  PMC
               4.       Davis MJ, Kim HJ, Nichols CG. K   channels in lymphatic function. Am J Physiol Cell Physiol 2022;323:C1018-35.  DOI  PubMed
                                          ATP
                    PMC
               5.       Davis MJ, Castorena-Gonzalez JA, Kim HJ, Li M, Remedi M, Nichols CG. Lymphatic contractile dysfunction in mouse models of
                    Cantú Syndrome with K ATP  channel gain-of-function. Function 2023;4:zqad017.  DOI  PubMed  PMC
                                                                       +
               6.       Alberici LC, Oliveira HC, Paim BA, et al. Mitochondrial ATP-sensitive K  channels as redox signals to liver mitochondria in
                    response to hypertriglyceridemia. Free Radic Biol Med 2009;47:1432-9.  DOI
                                                                   +
               7.       Zhou M, Yoshikawa K, Akashi H, et al. Localization of ATP-sensitive K  channel subunits in rat liver. World J Exp Med 2019;9:14-
                    31.  DOI  PubMed  PMC
               8.       McTaggart JS, Clark RH, Ashcroft FM. The role of the K   channel in glucose homeostasis in health and disease: more than meets
                                                          ATP
                    the islet. J Physiol 2010;588:3201-9.  DOI  PubMed  PMC
               9.       Bennett K, James C, Hussain K. Pancreatic β-cell K ATP  channels: hypoglycaemia and hyperglycaemia. Rev Endocr Metab Disord
                    2010;11:157-63.  DOI  PubMed
               10.       Olson TM, Terzic A. Human K ATP  channelopathies: diseases of metabolic homeostasis. Pflugers Arch 2010;460:295-306.  DOI
                    PubMed  PMC
               11.       Nichols CG. Adenosine triphosphate-sensitive potassium currents in heart disease and cardioprotection. Card Electrophysiol Clin
                    2016;8:323-35.  DOI  PubMed  PMC
               12.       Nichols CG. Personalized therapeutics for K  -dependent pathologies. Annu Rev Pharmacol Toxicol 2023;63:541-63.  DOI  PubMed
                                                ATP
                    PMC
               13.       Brar PC, Heksch R, Cossen K, et al. Management and appropriate use of diazoxide in infants and children with hyperinsulinism. J
                    Clin Endocrinol Metab 2020;105:3750-61.  DOI
               14.       Lang V, Light PE. The molecular mechanisms and pharmacotherapy of ATP-sensitive potassium channel gene mutations underlying
                    neonatal diabetes. Pharmacogen Pers Med 2010;3:145-61.  DOI  PubMed  PMC
               15.       Kharade SV, Nichols C, Denton JS. The shifting landscape of K   channelopathies and the need for “sharper” therapeutics. Future
                                                              ATP
                    Med Chem 2016;8:789-802.  DOI  PubMed  PMC
               16.       Saint-Martin C, Arnoux JB, de Lonlay P, Bellanné-Chantelot C. K   channel mutations in congenital hyperinsulinism. Semin Pediatr
                                                               ATP
                    Surg 2011;20:18-22.  DOI  PubMed
               17.       Gloyn AL, Pearson ER, Antcliff JF, et al. Activating mutations in the gene encoding the ATP-sensitive potassium-channel subunit
                    Kir6.2 and permanent neonatal diabetes. N Engl J Med 2004;350:1838-49.  DOI
               18.       Antzelevitch C, Barajas-Martinez H. A gain-of-function I(K- ATP ) mutation and its role in sudden cardiac death associated with J-wave
                    syndromes. Heart Rhythm 2010;7:1472-4.  DOI  PubMed  PMC
               19.       Levin MD, Zhang H, Uchida K, Grange DK, Singh GK, Nichols CG. Electrophysiologic consequences of KATP gain of function in
                    the heart: conduction abnormalities in Cantu syndrome. Heart Rhythm 2015;12:2316-24.  DOI  PubMed  PMC
               20.       Baczkó I, Husti Z, Lang V, Leprán I, Light PE. Sarcolemmal K   channel modulators and cardiac arrhythmias. Curr Med Chem
                                                              ATP
                    2011;18:3640-61.  DOI  PubMed
               21.       Gao J, McClenaghan C, Matreyek KA, Grange DK, Nichols CG. Rapid characterization of the functional and pharmacological
                    consequences of cantú syndrome K ATP  channel mutations in intact cells. J Pharmacol Exp Ther 2023;386:298-309.  DOI  PubMed
                    PMC
               22.       Cooper PE, Sala-Rabanal M, Lee SJ, Nichols CG. Differential mechanisms of Cantú syndrome-associated gain of function mutations
                    in the ABCC9 (SUR2) subunit of the K   channel. J Gen Physiol 2015;146:527-40.  DOI  PubMed  PMC
                                             ATP
               23.       McClenaghan C, Nichols CG. Kir6.1 and SUR2B in Cantú syndrome. Am J Physiol Cell Physiol 2022;323:C920-35.  DOI  PubMed
                    PMC
               24.       Wrzosek A, Augustynek B, Żochowska M, Szewczyk A. Mitochondrial potassium channels as druggable targets. Biomolecules
                    2020;10:1200.  DOI  PubMed  PMC
               25.       Foster MN, Coetzee WA. K ATP  channels in the cardiovascular system. Physiol Rev 2016;96:177-252.  DOI  PubMed  PMC
               26.       Garlid KD, Paucek P, Yarov-Yarovoy V, et al. Cardioprotective effect of diazoxide and its interaction with mitochondrial ATP-
                           +
                    sensitive K  channels. Possible mechanism of cardioprotection. Circ Res 1997;81:1072-82.  DOI
               27.       Baumgartner WA. Neuroprotection in cardiac surgery. Ann Thorac Surg 2005;79:S2254-6.  DOI  PubMed
               28.       Shake JG, Peck EA, Marban E, et al. Pharmacologically induced preconditioning with diazoxide: a novel approach to brain
                    protection. Ann Thorac Surg 2001;72:1849-54.  DOI
   178   179   180   181   182   183   184   185   186   187   188