Page 183 - Read Online
P. 183
Page 16 of 21 Bradshaw et al. Vessel Plus 2023;7:35 https://dx.doi.org/10.20517/2574-1209.2023.121
REFERENCES
+
1. Noma A. ATP-regulated K channels in cardiac muscle. Nature 1983;305:147-8. DOI PubMed
2. Aziz Q, Thomas AM, Gomes J, et al. The ATP-sensitive potassium channel subunit, Kir6.1, in vascular smooth muscle plays a major
role in blood pressure control vascular biology. Vasc Biol 2014;64:523-9. DOI
3. Li A, Knutsen RH, Zhang H, et al. Hypotension due to Kir6.1 gain-of-function in vascular smooth muscle. J Am Heart Assoc
2013;2:e000365. DOI PubMed PMC
4. Davis MJ, Kim HJ, Nichols CG. K channels in lymphatic function. Am J Physiol Cell Physiol 2022;323:C1018-35. DOI PubMed
ATP
PMC
5. Davis MJ, Castorena-Gonzalez JA, Kim HJ, Li M, Remedi M, Nichols CG. Lymphatic contractile dysfunction in mouse models of
Cantú Syndrome with K ATP channel gain-of-function. Function 2023;4:zqad017. DOI PubMed PMC
+
6. Alberici LC, Oliveira HC, Paim BA, et al. Mitochondrial ATP-sensitive K channels as redox signals to liver mitochondria in
response to hypertriglyceridemia. Free Radic Biol Med 2009;47:1432-9. DOI
+
7. Zhou M, Yoshikawa K, Akashi H, et al. Localization of ATP-sensitive K channel subunits in rat liver. World J Exp Med 2019;9:14-
31. DOI PubMed PMC
8. McTaggart JS, Clark RH, Ashcroft FM. The role of the K channel in glucose homeostasis in health and disease: more than meets
ATP
the islet. J Physiol 2010;588:3201-9. DOI PubMed PMC
9. Bennett K, James C, Hussain K. Pancreatic β-cell K ATP channels: hypoglycaemia and hyperglycaemia. Rev Endocr Metab Disord
2010;11:157-63. DOI PubMed
10. Olson TM, Terzic A. Human K ATP channelopathies: diseases of metabolic homeostasis. Pflugers Arch 2010;460:295-306. DOI
PubMed PMC
11. Nichols CG. Adenosine triphosphate-sensitive potassium currents in heart disease and cardioprotection. Card Electrophysiol Clin
2016;8:323-35. DOI PubMed PMC
12. Nichols CG. Personalized therapeutics for K -dependent pathologies. Annu Rev Pharmacol Toxicol 2023;63:541-63. DOI PubMed
ATP
PMC
13. Brar PC, Heksch R, Cossen K, et al. Management and appropriate use of diazoxide in infants and children with hyperinsulinism. J
Clin Endocrinol Metab 2020;105:3750-61. DOI
14. Lang V, Light PE. The molecular mechanisms and pharmacotherapy of ATP-sensitive potassium channel gene mutations underlying
neonatal diabetes. Pharmacogen Pers Med 2010;3:145-61. DOI PubMed PMC
15. Kharade SV, Nichols C, Denton JS. The shifting landscape of K channelopathies and the need for “sharper” therapeutics. Future
ATP
Med Chem 2016;8:789-802. DOI PubMed PMC
16. Saint-Martin C, Arnoux JB, de Lonlay P, Bellanné-Chantelot C. K channel mutations in congenital hyperinsulinism. Semin Pediatr
ATP
Surg 2011;20:18-22. DOI PubMed
17. Gloyn AL, Pearson ER, Antcliff JF, et al. Activating mutations in the gene encoding the ATP-sensitive potassium-channel subunit
Kir6.2 and permanent neonatal diabetes. N Engl J Med 2004;350:1838-49. DOI
18. Antzelevitch C, Barajas-Martinez H. A gain-of-function I(K- ATP ) mutation and its role in sudden cardiac death associated with J-wave
syndromes. Heart Rhythm 2010;7:1472-4. DOI PubMed PMC
19. Levin MD, Zhang H, Uchida K, Grange DK, Singh GK, Nichols CG. Electrophysiologic consequences of KATP gain of function in
the heart: conduction abnormalities in Cantu syndrome. Heart Rhythm 2015;12:2316-24. DOI PubMed PMC
20. Baczkó I, Husti Z, Lang V, Leprán I, Light PE. Sarcolemmal K channel modulators and cardiac arrhythmias. Curr Med Chem
ATP
2011;18:3640-61. DOI PubMed
21. Gao J, McClenaghan C, Matreyek KA, Grange DK, Nichols CG. Rapid characterization of the functional and pharmacological
consequences of cantú syndrome K ATP channel mutations in intact cells. J Pharmacol Exp Ther 2023;386:298-309. DOI PubMed
PMC
22. Cooper PE, Sala-Rabanal M, Lee SJ, Nichols CG. Differential mechanisms of Cantú syndrome-associated gain of function mutations
in the ABCC9 (SUR2) subunit of the K channel. J Gen Physiol 2015;146:527-40. DOI PubMed PMC
ATP
23. McClenaghan C, Nichols CG. Kir6.1 and SUR2B in Cantú syndrome. Am J Physiol Cell Physiol 2022;323:C920-35. DOI PubMed
PMC
24. Wrzosek A, Augustynek B, Żochowska M, Szewczyk A. Mitochondrial potassium channels as druggable targets. Biomolecules
2020;10:1200. DOI PubMed PMC
25. Foster MN, Coetzee WA. K ATP channels in the cardiovascular system. Physiol Rev 2016;96:177-252. DOI PubMed PMC
26. Garlid KD, Paucek P, Yarov-Yarovoy V, et al. Cardioprotective effect of diazoxide and its interaction with mitochondrial ATP-
+
sensitive K channels. Possible mechanism of cardioprotection. Circ Res 1997;81:1072-82. DOI
27. Baumgartner WA. Neuroprotection in cardiac surgery. Ann Thorac Surg 2005;79:S2254-6. DOI PubMed
28. Shake JG, Peck EA, Marban E, et al. Pharmacologically induced preconditioning with diazoxide: a novel approach to brain
protection. Ann Thorac Surg 2001;72:1849-54. DOI