Page 186 - Read Online
P. 186

Bradshaw et al. Vessel Plus 2023;7:35  https://dx.doi.org/10.20517/2574-1209.2023.121   Page 19 of 21

               89.       Watanabe M, Okada T. Langendorff perfusion method as an ex vivo model to evaluate heart function in rats. In: Ishikawa K, editor.
                    Experimental models of cardiovascular diseases. New York: Springer; 2018. pp. 107-16.  DOI
               90.       Lawton JS, Hsia PW, Damiano RJ. The adenosine-triphosphate-sensitive potassium-channel opener pinacidil is effective in blood
                    cardioplegia. Ann Thorac Surg 1998;66:768-73.  DOI  PubMed
               91.      Ledingham S, Braimbridge M, Hearse D. The St. Thomas’ Hospital cardioplegic solution: a comparison of the efficacy of two
                    formulations. J Thorac Cardiovasc Surg 1987;93:240-6.  DOI  PubMed
               92.       Lawton JS, Sepic JD, Allen CT, Hsia PW, Damiano RJ. Myocardial protection with potassium-channel openers is as effective as St.
                    Thomas’ solution in the rabbit heart. Ann Thorac Surg 1996;62:31-9.  DOI
               93.       Lawton JS, Harrington GC, Allen CT, Hsia PW, Damiano RJ. Myocardial protection with pinacidil cardioplegia in the blood-
                    perfused heart. Ann Thorac Surg 1996;61:1680-8.  DOI  PubMed
               94.       Lawton JS, Hsia PW, Allen CT, Damiano RJ. Myocardial protection in the acutely injured heart: hyperpolarizing versus depolarizing
                    hypothermic cardioplegia. J Thorac Cardiovasc Surg 1997;113:567-75.  DOI  PubMed
               95.       Garlid KD, Paucek P, Yarov-Yarovoy V, Sun X, Schindler PA. The mitochondrial K ATP  channel as a receptor for potassium channel
                    openers. J Biol Chem 1996;271:8796-9.  DOI  PubMed
               96.      Andersson KE. Clinical pharmacology of potassium channel openers. Pharmacol Toxicol 1992;70:244-54.  DOI  PubMed
               97.       Faivre JF, Findlay I. Effects of tolbutamide, glibenclamide and diazgxide upon action potentials recorded from rat ventricular muscle.
                    Biochim Biophys Acta Bioenerg 1989;984:1-5.  DOI
               98.       Lascano EC, Negroni JA, Del Valle HF. Ischemic shortening of action potential duration as a result of K   channel opening
                                                                                            ATP
                    attenuates myocardial stunning by reducing calcium influx. Mol Cell Biochem 2002;236:53-61.  DOI  PubMed
                                                       +
               99.       Inoue I, Nagase H, Kishi K, Higuti T. ATP-sensitive K  channel in the mitochondrial inner membrane. Nature 1991;352:244-7.  DOI
                    PubMed
               100.      Rousou AJ, Ericsson M, Federman M, Levitsky S, Mccully JD. Opening of mitochondrial KATP channels enhances cardioprotection
                    through the modulation of mitochondrial matrix volume, calcium accumulation, and respiration. Am J Physiol Heart Circ Physiol
                    2004;287:1967-76.  DOI  PubMed
               101.      Nakai Y, Horimoto H, Mieno S, Sasaki S. Mitochondrial ATP-sensitive potassium channel plays a dominant role in ischemic
                    preconditioning of rabbit heart. Eur Surg Res 2001;33:57-63.  DOI
               102.      Coetzee WA. Multiplicity of effectors of the cardioprotective agent, diazoxide. Pharmacol Ther 2013;140:167-75.  DOI  PubMed
                    PMC
               103.      Anastacio MM, Kanter EM, Makepeace CM, et al. Relationship between mitochondrial matrix volume and cellular volume in
                    response to stress and the role of ATP-sensitive potassium channel. Circulation 2013;128:S130-5.  DOI  PubMed  PMC
                                                                                              2+
               104.      Murata M, Akao M, O’Rourke B, Marbán E. Mitochondrial ATP-sensitive potassium channels attenuate matrix Ca  overload during
                    simulated ischemia and reperfusion: possible mechanism of cardioprotection. Circ Res 2001;89:891-8.  DOI  PubMed
               105.      Steenbergen C, Hill ML, Jennings RB. Volume regulation and plasma membrane injury in aerobic, anaerobic, and ischemic
                    myocardium in vitro. Effects of osmotic cell swelling on plasma membrane integrity.Circ Res 1985;57:864-75.  DOI  PubMed
               106.      Al-Dadah AS, Voeller RK, Schuessler RB, Damiano RJ Jr, Lawton JS. Maintenance of myocyte volume homeostasis during stress by
                    diazoxide is cardioprotective. Ann Thorac Surg 2007;84:857-62.  DOI  PubMed
               107.      Maffit SK, Sellitto AD, Al-Dadah AS, Schuessler RB, Damiano RJ Jr, Lawton JS. Diazoxide maintains human myocyte volume
                    homeostasis during stress. J Am Heart Assoc 2012;1:e000778.  DOI  PubMed  PMC
               108.      Zhang HX, Akrouh A, Kurata HT, Remedi MS, Lawton JS, Nichols CG. HMR 1098 is not an SUR isotype specific inhibitor of
                    heterologous or sarcolemmal K   channels. J Mol Cell Cardiol 2011;50:552-60.  DOI
                                        ATP
               109.      Suzuki M, Saito T, Sato T, et al. Cardioprotective effect of diazoxide is mediated by activation of sarcolemmal but not mitochondrial
                    ATP-sensitive potassium channels in mice. Circulation 2003;107:682-5.  DOI
               110.      Wojtovich AP, Brookes PS. The endogenous mitochondrial complex II inhibitor malonate regulates mitochondrial ATP sensitive
                    potassium channels: implications for ischemic preconditioning. Biochim Biophys Acta 2008;1777:882-9.  DOI  PubMed  PMC
               111.      Ardehali H, Chen Z, Ko Y, Mejía-Alvarez R, Marbá E. Multiprotein complex containing succinate dehydrogenase confers
                                        +
                    mitochondrial ATP-sensitive K  channel activity. Proc Natl Acad Sci 2004;101:11880-5.  DOI  PubMed  PMC
               112.      Krenz M, Oldenburg O, Wimpee H, et al. Opening of ATP-sensitive potassium channels causes generation of free radicals in vascular
                    smooth muscle cells. Basic Res Cardiol 2002;97:365-73.  DOI
               113.      Zeng WZ, Liou HH, Murali Krishna U, Falck JR, Huang CL. Structural determinants and specificities for ROMK1-phosphoinositide
                    interaction. Am J Physiol-Renal 2002;282:826-34.  DOI
               114.      Forbes RA, Steenbergen C, Murphy E. Diazoxide-induced cardioprotection requires signaling through a redox-sensitive mechanism.
                    Circ Res 2001;88:802-9.  DOI  PubMed
               115.      Carroll R, Gant VA, Yellon DM. Mitochondrial K ATP  channel opening protects a human atrial-derived cell line by a mechanism
                    involving free radical generation. Cardiovasc Res 2001;51:691-700.  DOI  PubMed
               116.      Oldenburg O, Yang XM, Krieg T, et al. P1075 opens mitochondrial K ATP  channels and generates reactive oxygen species resulting in
                    cardioprotection of rabbit hearts. J Mol Cell Cardiol 2003;35:1035-42.  DOI
               117.      Garlid AO, Jaburek M, Jacobs JP, Garlid KD. Mitochondrial reactive oxygen species: which ROS signals cardioprotection? J Physiol
                    Heart Circ Physiol 2013;305:960-8.  DOI  PubMed  PMC
                                           +
               118.      Dröse S, Brandt U, Hanley PJ. K -independent actions of diazoxide question the role of inner membrane K   channels in
                                                                                                ATP
                    mitochondrial cytoprotective signaling. J Biol Chem 2006;281:23733-9.  DOI  PubMed
   181   182   183   184   185   186   187   188   189   190   191