Page 185 - Read Online
P. 185

Page 18 of 21              Bradshaw et al. Vessel Plus 2023;7:35  https://dx.doi.org/10.20517/2574-1209.2023.121

               61.       Prasad SM, Al-Dadah AS, Byrd GD, et al. Role of the sarcolemmal adenosine triphosphate-sensitive potassium channel in
                    hyperkalemic cardioplegia-induced myocyte swelling and reduced contractility. Ann Thorac Surg 2006;81:148-53.  DOI
               62.       Henn MC, Janjua MB, Kanter EM, et al. Adenosine triphosphate-sensitive potassium channel Kir subunits implicated in
                    cardioprotection by diazoxide. J Am Heart Assoc 2015;4:e002016.  DOI  PubMed  PMC
               63.       Henn MC, Janjua MB, Zhang H, et al. Diazoxide cardioprotection is independent of adenosine triphosphate-sensitive potassium
                    channel Kir6.1 subunit in response to stress. J Am Coll Surg 2015;221:319-25.  DOI  PubMed  PMC
               64.       Sellitto AD, Al-Dadah AS, Schuessler RB, Nichols CG, Lawton JS. An open sarcolemmal adenosine triphosphate-sensitive
                    potassium channel is necessary for detrimental myocyte swelling secondary to stress. Circulation 2011;124:S70-4.  DOI  PubMed
                    PMC
               65.       Henn MC, Janjua MB, Zhang H, et al. Increased tolerance to stress in cardiac expressed gain-of-function of adenosine triphosphate-
                    sensitive potassium channel subunit Kir6.1. J Surg Res 2016;206:460-5.  DOI  PubMed  PMC
               66.       Wang J, Suarez-Pierre A, Dong J, Lawton JS. Abstract 17206: implication of potassium inward rectifying (Kir1.1) Channel
                    component in cardioprotective mechanism of adenosine triphosphate-sensitive potassium channel opener diazoxide. Circulation
                    2019;140:A17206. Avaliable from: https://www.ahajournals.org/doi/abs/10.1161/circ.140.suppl_1.17206. [Last accessed on 18 Jan
                    2024]
               67.       Rotko D, Kunz WS, Szewczyk A, Kulawiak B. Signaling pathways targeting mitochondrial potassium channels. Int J Biochem Cell
                    Biol 2020;125:105792.  DOI  PubMed
               68.       Auchampach JA, Grover GJ, Gross GJ. Blockade of ischaemic preconditioning in dogs by the novel ATP dependent potassium
                    channel antagonist sodium 5-hydroxydecanoate downloaded from. Cardiovasc Res 1992;26:1054-62.  DOI
               69.       Shigematsu S, Sato T, Abe T, Saikawa T, Sakata T, Arita M. Pharmacological evidence for the persistent activation of ATP-sensitive
                     +
                    K  channels in early phase of reperfusion and its protective role against myocardial stunning. Circulation 1995;92:2266-75.  DOI
                    PubMed
               70.       Galifianes M, Shattock MJ, Hearse DJ. Effects of potassium channel modulation during global ischaemia in isolated rat heart with
                    and without cardioplegia. Cardiovasc Res 1992;26:1063-8.  DOI
               71.       Grover GJ, Sleph PG, Parham CS. Nicorandil Improves postischemic contractile function independently of direct myocardial effects.
                    J Cardiovasc Pharmacol 1990;15:698-705.  DOI  PubMed
                                                            +
               72.       Pignac J, Bourgouin J, Dumont L. Cold cardioplegia and the K  channel modulator aprikalim (RP 52891): improved cardioprotection
                    in isolated ischemic rabbit hearts. Can J Physiol Pharmacol 1994;72:126-32.  DOI
               73.       Janjua MB, Makepeace CM, Anastacio MM, Schuessler RB, Nichols CG, Lawton JS. Cardioprotective benefits of adenosine
                    triphosphate-sensitive potassium channel opener diazoxide are lost with administration after the onset of stress in mouse and human
                    myocytes. J Am Coll Surg 2014;219:803-13.  DOI  PubMed  PMC
               74.       Tsuchida A, Miura T, Miki T, et al. Critical timing of mitochondrial K ATP channel opening for enhancement of myocardial
                    tolerance against infarction. Basic Res Cardiol 2001;96:446-53.  DOI
               75.       Kleinbongard P, Lieder H, Skyschally A, Heusch G. Diazoxide is a powerful cardioprotectant but is not feasible in a realistic infarct
                    scenario. Front Cardiovasc Med 2023;10:1173462.  DOI  PubMed  PMC
               76.       Deja MA, Golba KS, Malinowski M, et al. Diazoxide provides maximal K   channels independent protection if present throughout
                                                                    ATP
                    hypoxia. Ann Thorac Surg 2006;81:1408-16.  DOI
               77.       Mizutani S, Prasad SM, Sellitto AD, Schuessler RB, Damiano RJ Jr, Lawton JS. Myocyte volume and function in response to
                    osmotic stress: observations in the presence of an adenosine triphosphate-sensitive potassium channel opener. Circulation
                    2005;112:I219-23.  DOI  PubMed
               78.       Breisblatt WM, Stein KL, Wolfe CJ, et al. Acute myocardial dysfunction and recovery: a common occurrence after coronary bypass
                    surgery. J Am Coll Cardiol 1990;15:1261-9.  DOI
               79.       Velez A, Sebestyen K, Lawton J. A novel, clinically useful definition of myocardial stunning after cardiac surgery. J Am Coll Cardiol
                    2022;79:1042.  DOI
               80.       Heyndrickx GR, Millard RW, Mcritchie RJ, Maroko PR, Vatner SF. Regional myocardial functional and electrophysiological
                    alterations after brief coronary artery occlusion in conscious dogs. J Clin Invest 1975;56:978-85.  DOI  PubMed  PMC
               81.       Torregroza C, Raupach A, Feige K, Weber NC, Hollmann MW, Huhn R. Perioperative cardioprotection: general mechanisms and
                    pharmacological approaches. Anesth Analg 2020;131:1765-80.  DOI  PubMed
               82.       Mizutani S, Al-Dadah AS, Bloch JB, et al. Hyperkalemic cardioplegia-induced myocyte swelling and contractile dysfunction:
                    prevention by diazoxide. Ann Thorac Surg 2006;81:154-9.  DOI
               83.       Murry CE, Jennings RB, Reimer KA. Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium.
                    Circulation 1986;74:1124-36.  DOI  PubMed
               84.       Gross GJ, Auchampach JA. Blockade of ATP-sensitive potassium channels prevents myocardial preconditioning in dogs. Circ Res
                    1992;70:223-33.  DOI  PubMed
               85.       Ishida T, Yarimizu K, Gute DC, Korthuis RJ. Mechanisms of ischemic preconditioning. Shock 1994;8:86-94.  DOI
               86.       Wakahara N, Katoh H, Yaguchi Y, et al. Difference in the cardioprotective mechanisms between ischemic preconditioning and
                    pharmacological preconditioning by diazoxide in rat hearts. Circ J 2004;68:156-62.  DOI
               87.       Sutherland FJ, Shattock MJ, Baker KE, Hearse DJ. Mouse isolated perfused heart: characteristics and cautions. Clin Exp Pharmacol
                    Physiol 2003;30:67-78.  DOI  PubMed
               88.       Motayagheni N. Modified Langendorff technique for mouse heart cannulation: improved heart quality and decreased risk of ischemia.
                    MethodsX 2017;4:508-12.  DOI  PubMed  PMC
   180   181   182   183   184   185   186   187   188   189   190