Page 185 - Read Online
P. 185
Page 18 of 21 Bradshaw et al. Vessel Plus 2023;7:35 https://dx.doi.org/10.20517/2574-1209.2023.121
61. Prasad SM, Al-Dadah AS, Byrd GD, et al. Role of the sarcolemmal adenosine triphosphate-sensitive potassium channel in
hyperkalemic cardioplegia-induced myocyte swelling and reduced contractility. Ann Thorac Surg 2006;81:148-53. DOI
62. Henn MC, Janjua MB, Kanter EM, et al. Adenosine triphosphate-sensitive potassium channel Kir subunits implicated in
cardioprotection by diazoxide. J Am Heart Assoc 2015;4:e002016. DOI PubMed PMC
63. Henn MC, Janjua MB, Zhang H, et al. Diazoxide cardioprotection is independent of adenosine triphosphate-sensitive potassium
channel Kir6.1 subunit in response to stress. J Am Coll Surg 2015;221:319-25. DOI PubMed PMC
64. Sellitto AD, Al-Dadah AS, Schuessler RB, Nichols CG, Lawton JS. An open sarcolemmal adenosine triphosphate-sensitive
potassium channel is necessary for detrimental myocyte swelling secondary to stress. Circulation 2011;124:S70-4. DOI PubMed
PMC
65. Henn MC, Janjua MB, Zhang H, et al. Increased tolerance to stress in cardiac expressed gain-of-function of adenosine triphosphate-
sensitive potassium channel subunit Kir6.1. J Surg Res 2016;206:460-5. DOI PubMed PMC
66. Wang J, Suarez-Pierre A, Dong J, Lawton JS. Abstract 17206: implication of potassium inward rectifying (Kir1.1) Channel
component in cardioprotective mechanism of adenosine triphosphate-sensitive potassium channel opener diazoxide. Circulation
2019;140:A17206. Avaliable from: https://www.ahajournals.org/doi/abs/10.1161/circ.140.suppl_1.17206. [Last accessed on 18 Jan
2024]
67. Rotko D, Kunz WS, Szewczyk A, Kulawiak B. Signaling pathways targeting mitochondrial potassium channels. Int J Biochem Cell
Biol 2020;125:105792. DOI PubMed
68. Auchampach JA, Grover GJ, Gross GJ. Blockade of ischaemic preconditioning in dogs by the novel ATP dependent potassium
channel antagonist sodium 5-hydroxydecanoate downloaded from. Cardiovasc Res 1992;26:1054-62. DOI
69. Shigematsu S, Sato T, Abe T, Saikawa T, Sakata T, Arita M. Pharmacological evidence for the persistent activation of ATP-sensitive
+
K channels in early phase of reperfusion and its protective role against myocardial stunning. Circulation 1995;92:2266-75. DOI
PubMed
70. Galifianes M, Shattock MJ, Hearse DJ. Effects of potassium channel modulation during global ischaemia in isolated rat heart with
and without cardioplegia. Cardiovasc Res 1992;26:1063-8. DOI
71. Grover GJ, Sleph PG, Parham CS. Nicorandil Improves postischemic contractile function independently of direct myocardial effects.
J Cardiovasc Pharmacol 1990;15:698-705. DOI PubMed
+
72. Pignac J, Bourgouin J, Dumont L. Cold cardioplegia and the K channel modulator aprikalim (RP 52891): improved cardioprotection
in isolated ischemic rabbit hearts. Can J Physiol Pharmacol 1994;72:126-32. DOI
73. Janjua MB, Makepeace CM, Anastacio MM, Schuessler RB, Nichols CG, Lawton JS. Cardioprotective benefits of adenosine
triphosphate-sensitive potassium channel opener diazoxide are lost with administration after the onset of stress in mouse and human
myocytes. J Am Coll Surg 2014;219:803-13. DOI PubMed PMC
74. Tsuchida A, Miura T, Miki T, et al. Critical timing of mitochondrial K ATP channel opening for enhancement of myocardial
tolerance against infarction. Basic Res Cardiol 2001;96:446-53. DOI
75. Kleinbongard P, Lieder H, Skyschally A, Heusch G. Diazoxide is a powerful cardioprotectant but is not feasible in a realistic infarct
scenario. Front Cardiovasc Med 2023;10:1173462. DOI PubMed PMC
76. Deja MA, Golba KS, Malinowski M, et al. Diazoxide provides maximal K channels independent protection if present throughout
ATP
hypoxia. Ann Thorac Surg 2006;81:1408-16. DOI
77. Mizutani S, Prasad SM, Sellitto AD, Schuessler RB, Damiano RJ Jr, Lawton JS. Myocyte volume and function in response to
osmotic stress: observations in the presence of an adenosine triphosphate-sensitive potassium channel opener. Circulation
2005;112:I219-23. DOI PubMed
78. Breisblatt WM, Stein KL, Wolfe CJ, et al. Acute myocardial dysfunction and recovery: a common occurrence after coronary bypass
surgery. J Am Coll Cardiol 1990;15:1261-9. DOI
79. Velez A, Sebestyen K, Lawton J. A novel, clinically useful definition of myocardial stunning after cardiac surgery. J Am Coll Cardiol
2022;79:1042. DOI
80. Heyndrickx GR, Millard RW, Mcritchie RJ, Maroko PR, Vatner SF. Regional myocardial functional and electrophysiological
alterations after brief coronary artery occlusion in conscious dogs. J Clin Invest 1975;56:978-85. DOI PubMed PMC
81. Torregroza C, Raupach A, Feige K, Weber NC, Hollmann MW, Huhn R. Perioperative cardioprotection: general mechanisms and
pharmacological approaches. Anesth Analg 2020;131:1765-80. DOI PubMed
82. Mizutani S, Al-Dadah AS, Bloch JB, et al. Hyperkalemic cardioplegia-induced myocyte swelling and contractile dysfunction:
prevention by diazoxide. Ann Thorac Surg 2006;81:154-9. DOI
83. Murry CE, Jennings RB, Reimer KA. Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium.
Circulation 1986;74:1124-36. DOI PubMed
84. Gross GJ, Auchampach JA. Blockade of ATP-sensitive potassium channels prevents myocardial preconditioning in dogs. Circ Res
1992;70:223-33. DOI PubMed
85. Ishida T, Yarimizu K, Gute DC, Korthuis RJ. Mechanisms of ischemic preconditioning. Shock 1994;8:86-94. DOI
86. Wakahara N, Katoh H, Yaguchi Y, et al. Difference in the cardioprotective mechanisms between ischemic preconditioning and
pharmacological preconditioning by diazoxide in rat hearts. Circ J 2004;68:156-62. DOI
87. Sutherland FJ, Shattock MJ, Baker KE, Hearse DJ. Mouse isolated perfused heart: characteristics and cautions. Clin Exp Pharmacol
Physiol 2003;30:67-78. DOI PubMed
88. Motayagheni N. Modified Langendorff technique for mouse heart cannulation: improved heart quality and decreased risk of ischemia.
MethodsX 2017;4:508-12. DOI PubMed PMC