Page 184 - Read Online
P. 184

Bradshaw et al. Vessel Plus 2023;7:35  https://dx.doi.org/10.20517/2574-1209.2023.121   Page 17 of 21

               29.       Caparrelli DJ, Cattaneo Ii SM, Bethea BT, et al. Pharmacological preconditioning ameliorates neurological injury in a model of spinal
                    cord ischemia. Ann Thorac Surg 2002;74:838-45.  DOI
               30.       O’Rourke B. Myocardial K ATP  channels in preconditioning. Circ Res 2000;87:845-55.  DOI  PubMed
                                                +
               31.       O’Rourke B. Evidence for mitochondrial K  channels and their role in cardioprotection. Circ Res 2004;94:420-32.  DOI  PubMed
                    PMC
               32.       Garlid KD. Opening mitochondrial K   in the heart - what happens, and what does not happen. Basic Res Cardiol 2000;95:275-9.
                                            ATP
                    DOI
               33.       Garlid KD, Dos Santos P, Xie ZJ, Costa AD, Paucek P. Mitochondrial potassium transport: the role of the mitochondrial ATP-
                           +
                    sensitive K  channel in cardiac function and cardioprotection. Biochim Biophys Acta 2003;1606:1-21.  DOI  PubMed
               34.       Hu H, Sato T, Seharaseyon J, et al. Pharmacological and histochemical distinctions between molecularly defined sarcolemmal K ATP
                    channels and native cardiac mitochondrial K ATP  channels. Mol Pharmacol 1999;55:1000-5.  DOI
               35.       Gross GJ, Fryer RM. Sarcolemmal versus mitochondrial ATP-sensitive K  channels and myocardial preconditioning. Circ
                                                                      +
                    Res 1999;84:973-9.  DOI
               36.       Kulawiak B, Szewczyk A. Current challenges of mitochondrial potassium channel research. Front Physiol 2022;13:907015.  DOI
                    PubMed  PMC
               37.       Tseng GN, Hoffman BF. Actions of pinacidil on membrane currents in canine ventricular myocytes and their modulation by
                    intracellular ATP and cAMP. Pflugers Arch 1990;415:414-24.  DOI  PubMed
               38.       Inagaki N, Gonoi T, Clement JP, et al. A family of sulfonylurea receptors determines the pharmacological properties of ATP-
                           +
                    sensitive K  channels. Neuron 1996;16:1011-7.  DOI
               39.       Seino S. ATP-sensitive potassium channels: a model of heteromultimeric potassium channel/receptor assemblies. Annu Rev Physiol
                    1999;61:337-62.  DOI
               40.       Shyng SL, Nichols CG. Octameric stoichiometry of the K   channel complex. J Gen Physiol 1997;110:655-64.  DOI  PubMed  PMC
                                                         ATP
               41.       Sellitto AD, Maffit SK, Al-Dadah AS, et al. Diazoxide maintenance of myocyte volume and contractility during stress: evidence for a
                    non-sarcolemmal K   channel location. J Thorac Cardiovasc Surg 2010;140:1153-9.  DOI  PubMed  PMC
                                 ATP
               42.       Garlid KD, Halestrap AP. The mitochondrial K   channel - fact or fiction? J Mol Cell Cardiol 2012;52:578-83.  DOI  PubMed
                                                    ATP
                    PMC
               43.       Hu X, Xu X, Huang Y, et al. Disruption of sarcolemmal ATP-sensitive potassium channel activity impairs the cardiac response to
                    systolic overload. Circ Res 2008;103:1009-17.  DOI  PubMed  PMC
               44.       Flagg TP, Kurata HT, Masia R, et al. Differential structure of atrial and ventricular K ATP : atrial K ATP  channels require SUR1. Circ Res
                    2008;103:1458-65.  DOI  PubMed  PMC
               45.       Paggio A, Checchetto V, Campo A, et al. Identification of an ATP-sensitive potassium channel in mitochondria.  Nature
                    2019;572:609-13.  DOI  PubMed  PMC
                                                             +
               46.       Garlid KD, Paucek P. Mitochondrial potassium transport: the K  cycle. Biochim Biophys Acta 2003;1606:23-41.  DOI
               47.       Kravenska Y, Checchetto V, Szabo I. Routes for potassium ions across mitochondrial membranes: a biophysical point of view with
                                            +
                    special focus on the ATP-sensitive K  channel. Biomolecules 2021;11:1172.  DOI  PubMed  PMC
               48.       Flagg TP, Enkvetchakul D, Koster JC, Nichols CG. Muscle KATP channels: recent insights to energy sensing and myoprotection.
                    Physiol Rev 2010;90:799-829.  DOI  PubMed  PMC
               49.       Wlson WR, Okun R. The acute hemodynamic effects of diazoxide in man. Circulation 1963;28:89-93.  DOI
               50.       Rubin AA, Roth FE, Taylor RM, Rosenkilde H. Pharmacology of diazoxide, an antihypertensive, nondiuretic benzothiadiazine. J
                    Pharmacol Exp Ther 1962;136:344-52. Avaliable from: https://jpet.aspetjournals.org/content/136/3/344.short [Last accessed on 26
                    Dec 2023].
               51.      Diazoxide. Br Med J 1972;4:417-8.  PubMed
               52.      Kumar GK, Dastoor FC, Rodriguez Robayo J, Razzaque MA. Side effects of diazoxide. JAMA 1976;235:275-6.  DOI
               53.       Komatsu Y, Nakamura A, Takihata M, et al. Safety and tolerability of diazoxide in Japanese patients with hyperinsulinemic
                    hypoglycemia. Endocr J 2016;63:311-4.  DOI
               54.       Gray KD, Dudash K, Escobar C, et al; Best Pharmaceuticals for Children Act-Pediatric Trials Network Steering Committee.
                    Prevalence and safety of diazoxide in the neonatal intensive care unit. J Perinatol 2018;38:1496-502.  DOI  PubMed  PMC
               55.       Brito PC, Lopes V, Antunes E, Alves M, Gonçalves I, Matos AC. Hypoglycemia in a non-diabetic patient and the side effects of
                    diazoxide use. Cureus 2023;15:e36804.  DOI  PubMed  PMC
               56.       Quayle JM, Nelson MT, Standen NB. ATP-sensitive and inwardly rectifying potassium channels in smooth muscle. Physiol Rev
                    1997;77:1165-232.  DOI  PubMed
               57.       Aziz Q, Li Y, Anderson N, Ojake L, Tsisanova E, Tinker A. Molecular and functional characterization of the endothelial ATP-
                    sensitive potassium channel. J Biol Chem 2017;292:17587-97.  DOI  PubMed  PMC
               58.       Wrzosek A, Gałecka S, Żochowska M, Olszewska A, Kulawiak B. Alternative targets for modulators of mitochondrial potassium
                    channels. Molecules 2022;27:299.  DOI  PubMed  PMC
               59.       Wang J, Papanicolaou K, Tryon R, et al. Kir1.1 and SUR1 are not implicated as subunits of an adenosine triphosphate-sensitive
                    potassium channel involved in diazoxide cardioprotection. JTCVS Open 2023;15:231-41.  DOI  PubMed  PMC
               60.       Anastacio MM, Kanter EM, Makepeace C, et al. Cardioprotective mechanism of diazoxide involves the inhibition of succinate
                    dehydrogenase. Ann Thorac Surg 2013;95:2042-50.  DOI  PubMed  PMC
   179   180   181   182   183   184   185   186   187   188   189