Page 92 - Read Online
P. 92
Page 14 of 15 Duan et al. Soft Sci. 2025, 5, 4 https://dx.doi.org/10.20517/ss.2024.46
activity of the urinary bladder. Sci. Adv. 2020, 6, eabc9675. DOI PubMed PMC
4. Klein, R. D.; Hultgren, S. J. Urinary tract infections: microbial pathogenesis, host-pathogen interactions and new treatment strategies.
Nat. Rev. Microbiol. 2020, 18, 211-26. DOI PubMed PMC
5. Kanai, A. J. Afferent mechanism in the urinary tract. Handb. Exp. Pharmacol. 2011, 202, 171-205. DOI PubMed
6. Sands, J. M.; Layton, H. E. Advances in understanding the urine-concentrating mechanism. Annu. Rev. Physiol. 2014, 76, 387-409.
DOI PubMed
7. Griffiths, D. Neural control of micturition in humans: a working model. Nat. Rev. Urol. 2015, 12, 695-705. DOI PubMed
8. Franken, J.; De, B. H.; Rietjens, R.; et al. X-ray videocystometry for high-speed monitoring of urinary tract function in mice. Sci. Adv.
2021, 7, eabi6821. DOI PubMed PMC
9. Osman, N. I.; Esperto, F.; Chapple, C. R. Detrusor underactivity and the underactive bladder: a systematic review of preclinical and
clinical studies. Eur. Urol. 2018, 74, 633-43. DOI PubMed
10. Mariano L, Ingersoll MA. The immune response to infection in the bladder. Nat. Rev. Urol. 2020, 17, 439-58. DOI PubMed
11. Kwon, J.; Kim, D. Y.; Cho, K. J.; et al. Pathophysiology of overactive bladder and pharmacologic treatments including β3-
adrenoceptor agonists -basic research perspectives. Int. Neurourol. J. 2024, 28, 12-33. DOI PubMed PMC
12. Jonas, C.; Lockl, J.; Röglinger, M.; Weidlich, R. Designing a wearable IoT-based bladder level monitoring system for neurogenic
bladder patients. Eur. J. Inf. Syst. 2024, 33, 993-1015. DOI
13. Vasquez, E. J.; Kendall, A.; Musulin, S.; Vaden, S. L. Three-dimensional bladder ultrasound to measure daily urinary bladder volume
in hospitalized dogs. J. Vet. Intern. Med. 2021, 35, 2256-62. DOI PubMed PMC
14. Kothapalli, S. R.; Sonn, G. A.; Choe, J. W.; et al. Simultaneous transrectal ultrasound and photoacoustic human prostate imaging. Sci.
Transl. Med. 2019, 11, eaav2169. DOI PubMed
15. Angermund, A.; Inglese, G.; Goldstine, J.; Iserloh, L.; Libutzki, B. The burden of illness in initiating intermittent catheterization: an
analysis of German health care claims data. BMC. Urol. 2021, 21, 57. DOI PubMed PMC
16. Hadfield-Law, L. Male catheterization. Accid. Emerg. Nurs. 2001, 9, 257-63. DOI PubMed
17. Zamli, A. H.; Ratnalingam, K.; Yusmido, Y. A.; Ong, K. G. Diagnostic accuracy of single channel cystometry for neurogenic bladder
diagnosis following spinal cord injury: a pilot study. Spinal. Cord. Ser. Cases. 2017, 3, 16044. DOI PubMed PMC
18. Akcay, A.; Yagci, A. B.; Celen, S.; Ozlulerden, Y.; Turk, N. S.; Ufuk, F. VI-RADS score and tumor contact length in MRI: a potential
method for the detection of muscle invasion in bladder cancer. Clin. Imaging. 2021, 77, 25-36. DOI PubMed
19. Cornelissen, S. W. E.; Veenboer, P. W.; Wessels, F. J.; Meijer, R. P. Diagnostic accuracy of multiparametric MRI for local staging of
bladder cancer: a systematic review and meta-analysis. Urology 2020, 145, 22-9. DOI PubMed
20. Morcos, S. K. Computed tomography urography technique, indications and limitations. Curr. Opin. Urol. 2007, 17, 56-64. DOI
PubMed
21. Yu, H.; Liu, Y.; Zhou, G.; Peng, M. Multilayer perceptron algorithm-assisted flexible piezoresistive PDMS/chitosan/cMWCNT sponge
pressure sensor for sedentary healthcare monitoring. ACS. Sens. 2023, 8, 4391-401. DOI PubMed
22. Kumar, M. N.; Muzzarelli, R. A.; Muzzarelli, C.; Sashiwa, H.; Domb, A. J. Chitosan chemistry and pharmaceutical perspectives.
Chem. Rev. 2004, 104, 6017-84. DOI PubMed
23. Ke, C. L.; Deng, F. S.; Chuang, C. Y.; Lin, C. H. Antimicrobial actions and applications of chitosan. Polymers 2021, 13, 904. DOI
PubMed PMC
24. Ben, Z. Y.; Samsudin, H.; Yhaya, M. F. Glycerol: its properties, polymer synthesis, and applications in starch based films. Eur. Polym.
J. 2022, 175, 111377. DOI
25. Paudel, S.; Regmi, S.; Janaswamy, S. Effect of glycerol and sorbitol on cellulose-based biodegradable films. Food. Packag. Shelf. Life.
2023, 37, 101090. DOI
26. Zeng, H.; Guo, J.; Zhang, Y.; et al. Green glycerol tailored composite membranes with boosted nanofiltration performance. J. Membr.
Sci. 2022, 663, 121064. DOI
27. Kim, J.; Jeerapan, I.; Imani, S.; et al. Noninvasive alcohol monitoring using a wearable tattoo-based iontophoretic-biosensing system.
ACS. Sens. 2016, 1, 1011-9. DOI
28. Liao, W. C.; Jaw, F. S. Noninvasive electrical impedance analysis to measure human urinary bladder volume. J. Obstet. Gynaecol. Res.
2011, 37, 1071-5. DOI PubMed
29. Simić, M.; Freeborn, T. J.; Šekara, T. B.; Stavrakis, A. K.; Jeoti, V.; Stojanović, G. M. A novel method for in-situ extracting bio-
impedance model parameters optimized for embedded hardware. Sci. Rep. 2023, 13, 5070. DOI PubMed PMC
30. Hafid, A.; Difallah, S.; Alves, C.; et al. State of the art of non-invasive technologies for bladder monitoring: a scoping review. Sensors
2023, 23, 2758. DOI PubMed PMC
31. Lim, C.; Hong, Y. J.; Jung, J.; et al. Tissue-like skin-device interface for wearable bioelectronics by using ultrasoft, mass-permeable,
and low-impedance hydrogels. Sci. Adv. 2021, 7, eabd3716. DOI PubMed PMC
32. Cheng, T.; Zhang, Y.; Lai, W. Y.; Huang, W. Stretchable thin-film electrodes for flexible electronics with high deformability and
stretchability. Adv. Mater. 2015, 27, 3349-76. DOI PubMed
33. Zhang, J.; Hu, Y.; Zhang, L.; Zhou, J.; Lu, A. Transparent, ultra-stretching, tough, adhesive carboxyethyl chitin/polyacrylamide
hydrogel toward high-performance soft electronics. Nanomicro. Lett. 2022, 15, 8. DOI PubMed PMC
34. Peng, X.; Dong, K.; Zhang, Y.; et al. Sweat-permeable, biodegradable, transparent and self-powered chitosan-based electronic skin
with ultrathin elastic gold nanofibers. Adv. Funct. Mater. 2022, 32, 2112241. DOI

