Page 92 - Read Online
P. 92

Page 14 of 15                           Duan et al. Soft Sci. 2025, 5, 4  https://dx.doi.org/10.20517/ss.2024.46

                   activity of the urinary bladder. Sci. Adv. 2020, 6, eabc9675.  DOI  PubMed  PMC
               4.       Klein, R. D.; Hultgren, S. J. Urinary tract infections: microbial pathogenesis, host-pathogen interactions and new treatment strategies.
                   Nat. Rev. Microbiol. 2020, 18, 211-26.  DOI  PubMed  PMC
               5.       Kanai, A. J. Afferent mechanism in the urinary tract. Handb. Exp. Pharmacol. 2011, 202, 171-205.  DOI  PubMed
               6.       Sands, J. M.; Layton, H. E. Advances in understanding the urine-concentrating mechanism. Annu. Rev. Physiol. 2014, 76, 387-409.
                   DOI  PubMed
               7.       Griffiths, D. Neural control of micturition in humans: a working model. Nat. Rev. Urol. 2015, 12, 695-705.  DOI  PubMed
               8.       Franken, J.; De, B. H.; Rietjens, R.; et al. X-ray videocystometry for high-speed monitoring of urinary tract function in mice. Sci. Adv.
                   2021, 7, eabi6821.  DOI  PubMed  PMC
               9.       Osman, N. I.; Esperto, F.; Chapple, C. R. Detrusor underactivity and the underactive bladder: a systematic review of preclinical and
                   clinical studies. Eur. Urol. 2018, 74, 633-43.  DOI  PubMed
               10.      Mariano L, Ingersoll MA. The immune response to infection in the bladder. Nat. Rev. Urol. 2020, 17, 439-58.  DOI  PubMed
               11.      Kwon, J.; Kim, D. Y.; Cho, K. J.; et al. Pathophysiology of overactive bladder and pharmacologic treatments including β3-
                   adrenoceptor agonists -basic research perspectives. Int. Neurourol. J. 2024, 28, 12-33.  DOI  PubMed  PMC
               12.      Jonas, C.; Lockl, J.; Röglinger, M.; Weidlich, R. Designing a wearable IoT-based bladder level monitoring system for neurogenic
                   bladder patients. Eur. J. Inf. Syst. 2024, 33, 993-1015.  DOI
               13.      Vasquez, E. J.; Kendall, A.; Musulin, S.; Vaden, S. L. Three-dimensional bladder ultrasound to measure daily urinary bladder volume
                   in hospitalized dogs. J. Vet. Intern. Med. 2021, 35, 2256-62.  DOI  PubMed  PMC
               14.      Kothapalli, S. R.; Sonn, G. A.; Choe, J. W.; et al. Simultaneous transrectal ultrasound and photoacoustic human prostate imaging. Sci.
                   Transl. Med. 2019, 11, eaav2169.  DOI  PubMed
               15.      Angermund, A.; Inglese, G.; Goldstine, J.; Iserloh, L.; Libutzki, B. The burden of illness in initiating intermittent catheterization: an
                   analysis of German health care claims data. BMC. Urol. 2021, 21, 57.  DOI  PubMed  PMC
               16.      Hadfield-Law, L. Male catheterization. Accid. Emerg. Nurs. 2001, 9, 257-63.  DOI  PubMed
               17.      Zamli, A. H.; Ratnalingam, K.; Yusmido, Y. A.; Ong, K. G. Diagnostic accuracy of single channel cystometry for neurogenic bladder
                   diagnosis following spinal cord injury: a pilot study. Spinal. Cord. Ser. Cases. 2017, 3, 16044.  DOI  PubMed  PMC
               18.      Akcay, A.; Yagci, A. B.; Celen, S.; Ozlulerden, Y.; Turk, N. S.; Ufuk, F. VI-RADS score and tumor contact length in MRI: a potential
                   method for the detection of muscle invasion in bladder cancer. Clin. Imaging. 2021, 77, 25-36.  DOI  PubMed
               19.      Cornelissen, S. W. E.; Veenboer, P. W.; Wessels, F. J.; Meijer, R. P. Diagnostic accuracy of multiparametric MRI for local staging of
                   bladder cancer: a systematic review and meta-analysis. Urology 2020, 145, 22-9.  DOI  PubMed
               20.      Morcos, S. K. Computed tomography urography technique, indications and limitations. Curr. Opin. Urol. 2007, 17, 56-64.  DOI
                   PubMed
               21.      Yu, H.; Liu, Y.; Zhou, G.; Peng, M. Multilayer perceptron algorithm-assisted flexible piezoresistive PDMS/chitosan/cMWCNT sponge
                   pressure sensor for sedentary healthcare monitoring. ACS. Sens. 2023, 8, 4391-401.  DOI  PubMed
               22.      Kumar, M. N.; Muzzarelli, R. A.; Muzzarelli, C.; Sashiwa, H.; Domb, A. J. Chitosan chemistry and pharmaceutical perspectives.
                   Chem. Rev. 2004, 104, 6017-84.  DOI  PubMed
               23.      Ke, C. L.; Deng, F. S.; Chuang, C. Y.; Lin, C. H. Antimicrobial actions and applications of chitosan. Polymers 2021, 13, 904.  DOI
                   PubMed  PMC
               24.      Ben, Z. Y.; Samsudin, H.; Yhaya, M. F. Glycerol: its properties, polymer synthesis, and applications in starch based films. Eur. Polym.
                   J. 2022, 175, 111377.  DOI
               25.      Paudel, S.; Regmi, S.; Janaswamy, S. Effect of glycerol and sorbitol on cellulose-based biodegradable films. Food. Packag. Shelf. Life.
                   2023, 37, 101090.  DOI
               26.      Zeng, H.; Guo, J.; Zhang, Y.; et al. Green glycerol tailored composite membranes with boosted nanofiltration performance. J. Membr.
                   Sci. 2022, 663, 121064.  DOI
               27.      Kim, J.; Jeerapan, I.; Imani, S.; et al. Noninvasive alcohol monitoring using a wearable tattoo-based iontophoretic-biosensing system.
                   ACS. Sens. 2016, 1, 1011-9.  DOI
               28.      Liao, W. C.; Jaw, F. S. Noninvasive electrical impedance analysis to measure human urinary bladder volume. J. Obstet. Gynaecol. Res.
                   2011, 37, 1071-5.  DOI  PubMed
               29.      Simić, M.; Freeborn, T. J.; Šekara, T. B.; Stavrakis, A. K.; Jeoti, V.; Stojanović, G. M. A novel method for in-situ extracting bio-
                   impedance model parameters optimized for embedded hardware. Sci. Rep. 2023, 13, 5070.  DOI  PubMed  PMC
               30.      Hafid, A.; Difallah, S.; Alves, C.; et al. State of the art of non-invasive technologies for bladder monitoring: a scoping review. Sensors
                   2023, 23, 2758.  DOI  PubMed  PMC
               31.      Lim, C.; Hong, Y. J.; Jung, J.; et al. Tissue-like skin-device interface for wearable bioelectronics by using ultrasoft, mass-permeable,
                   and low-impedance hydrogels. Sci. Adv. 2021, 7, eabd3716.  DOI  PubMed  PMC
               32.      Cheng, T.; Zhang, Y.; Lai, W. Y.; Huang, W. Stretchable thin-film electrodes for flexible electronics with high deformability and
                   stretchability. Adv. Mater. 2015, 27, 3349-76.  DOI  PubMed
               33.      Zhang, J.; Hu, Y.; Zhang, L.; Zhou, J.; Lu, A. Transparent, ultra-stretching, tough, adhesive carboxyethyl chitin/polyacrylamide
                   hydrogel toward high-performance soft electronics. Nanomicro. Lett. 2022, 15, 8.  DOI  PubMed  PMC
               34.      Peng, X.; Dong, K.; Zhang, Y.; et al. Sweat-permeable, biodegradable, transparent and self-powered chitosan-based electronic skin
                   with ultrathin elastic gold nanofibers. Adv. Funct. Mater. 2022, 32, 2112241.  DOI
   87   88   89   90   91   92   93   94   95   96   97