Page 76 - Read Online
P. 76

Liu et al. Soft Sci 2024;4:44  https://dx.doi.org/10.20517/ss.2024.59           Page 19 of 21

                    copolymers. ACS Appl Energy Mater 2023;6:10147-54.  DOI
               78.       Peng P, Zhou J, Liang L, et al. Regulating thermogalvanic effect and mechanical robustness via redox ions for flexible quasi-solid-
                    state thermocells. Nano Micro Lett 2022;14:81.  DOI  PubMed  PMC
               79.       Kim T, Lee JS, Lee G, et al. High thermopower of ferri/ferrocyanide redox couple in organic-water solutions. Nano Energy
                    2017;31:160-7.  DOI
               80.       DiSalvo FJ. Thermoelectric cooling and power generation. Science 1999;285:703-6.  DOI  PubMed
               81.       Han C, Zhu Y, Yang L, et al. Remarkable high-temperature ionic thermoelectric performance induced by graphene in gel thermocells.
                    Energy Environ Sci 2024;17:1559-69.  DOI
               82.       Zhu Y, Han C, Chen J, et al. Ultra-high performance of ionic thermoelectric-electrochemical gel cells for harvesting low grade heat.
                    Energy Environ Sci 2024;17:4104-14.  DOI
               83.       Kong S, Huang Z, Hu Y, et al. Tellurium-nanowire-doped thermoelectric hydrogel with high stretchability and seebeck coefficient for
                    low-grade heat energy harvesting. Nano Energy 2023;115:108708.  DOI
               84.       Liu Y, Chen X, Dong X, Liu A, Ouyang K, Huang Y. Recurrently gellable and thermochromic inorganic hydrogel thermogalvanic
                    cells. Sci Adv 2024;10:eadp4533.  DOI  PubMed  PMC
               85.       Chen J, Shi C, Wu L, et al. Environmentally tolerant ionic hydrogel with high power density for low-grade heat harvesting. ACS Appl
                    Mater Interfaces 2022;14:34714-21.  DOI  PubMed
               86.       Chen B, Chen Q, Xiao S, Feng J, Zhang X, Wang T. Giant negative thermopower of ionic hydrogel by synergistic coordination and
                    hydration interactions. Sci Adv 2021;7:eabi7233.  DOI  PubMed  PMC
               87.       Li N, Liu W, Zheng X, et al. Antimicrobial hydrogel with multiple pH-responsiveness for infected burn wound healing. Nano Res
                    2023;16:11139-48.  DOI
               88.       Wang L, Chen P, Pan Y, et al. Injectable photocurable Janus hydrogel delivering hiPSC cardiomyocyte-derived exosome for post-
                    heart surgery adhesion reduction. Sci Adv 2023;9:eadh1753.  DOI  PubMed  PMC
               89.       Li X, Xiao X, Bai C, et al. Thermogalvanic hydrogels for self-powered temperature monitoring in extreme environments. J Mater
                    Chem C 2022;10:13789-96.  DOI
               90.       Quickenden TI, Mua Y. A review of power generation in aqueous thermogalvanic cells. J Electrochem Soc 1995;142:3985-94.  DOI
               91.       Hu R, Xu D, Luo X. Liquid thermocells enable low-grade heat harvesting. Matter 2020;3:1400-2.  DOI
               92.       Yang P, Liu K, Chen Q, et al. Wearable thermocells based on gel electrolytes for the utilization of body heat. Angew Chem Int Ed
                    Engl 2016;55:12050-3.  DOI  PubMed
               93.       Jin L, Greene GW, Macfarlane DR, Pringle JM. Redox-active quasi-solid-state electrolytes for thermal energy harvesting. ACS
                    Energy Lett 2016;1:654-8.  DOI
               94.       Yu B, Duan J, Li J, et al. All-day thermogalvanic cells for environmental thermal energy harvesting. Research 2019;2019:2460953.
                    DOI  PubMed  PMC
               95.       Meng FL, Gao M, Ding T, Yilmaz G, Ong WL, Ho GW. Modular deformable steam electricity cogeneration system with
                    photothermal, water, and electrochemical tunable multilayers. Adv Funct Mater 2020;30:2002867.  DOI
               96.       Schönig M, Schuster R. Sensitive and fast measurement of surface temperature with a thermogalvanic cell. Appl Phys Lett
                    2020;116:091601.  DOI
                                                                                              2+  3+
               97.       Inoue D, Niwa H, Nitani H, Moritomo Y. Scaling relation between electrochemical seebeck coefficient for Fe /Fe  in organic
                    solvent and its viscosity. J Phys Soc Jpn 2021;90:033602.  DOI
               98.       Fang R, Li X, Khan S A et al. Anhydrous thermogalvanic Gel for simultaneous waste heat recovery and thermal management of
                    electronics. ACS Appl Polym Mater 2023;5:4628-35.  DOI
               99.       Jiao N, Abraham TJ, Macfarlane DR, Pringle JM. Ionic liquid electrolytes for thermal energy harvesting using a cobalt redox couple.
                    J Electrochem Soc 2014;161:D3061-5.  DOI
               100.      Lazar MA, Al-Masri D, MacFarlane DR, Pringle JM. Enhanced thermal energy harvesting performance of a cobalt redox couple in
                    ionic liquid-solvent mixtures. Phys Chem Chem Phys 2016;18:1404-10.  DOI  PubMed
               101.      He J, Al-Masri D, MacFarlane DR, Pringle JM. Temperature dependence of the electrode potential of a cobalt-based redox couple in
                    ionic liquid electrolytes for thermal energy harvesting. Faraday Discuss 2016;190:205-18.  DOI  PubMed
               102.      Li J, Chen S, Han Z, et al. High performance bacterial cellulose organogel-based thermoelectrochemical cells by organic solvent-
                    driven crystallization for body heat harvest and self-powered wearable strain sensors. Adv Funct Mater 2023;33:2306509.  DOI
                                                                                                -
                                                                                                  -
               103.      Liang Y, Ka-ho Hui J, Morikawa M, Inoue H, Yamada T, Kimizuka N. High positive seebeck coefficient of aqueous i /i  thermocells
                                                                                                 3
                    based on host-guest interactions and LCST behavior of PEGylated α-Cyclodextrin. ACS Appl Energy Mater 2021;4:5326-31.  DOI
               104.      Artyukhov D, Kiselev N, Gorshkov N, et al. Harvesting waste thermal energy using a surface-modified carbon fiber-based thermo-
                    electrochemical cell. Sustainability 2021;13:1377.  DOI
               105.      Kang TJ, Fang S, Kozlov ME, et al. Electrical power from nanotube and graphene electrochemical thermal energy harvesters. Adv
                    Funct Mater 2012;22:477-89.  DOI
               106.      Abraham  TJ,  Tachikawa  N,  MacFarlane  DR,  Pringle  JM.  Investigation  of  the  kinetic  and  mass  transport  limitations  in
                    thermoelectrochemical cells with different electrode materials. Phys Chem Chem Phys 2014;16:2527-32.  DOI  PubMed
               107.      Laux E, Uhl S, Journot T, Brossard J, Jeandupeux L, Keppner H. Aspects of protonic ionic liquid as electrolyte in thermoelectric
                    generators. J Electron Mater 2016;45:3383-9.  DOI
               108.      Im H, Kim T, Song H, et al. High-efficiency electrochemical thermal energy harvester using carbon nanotube aerogel sheet
   71   72   73   74   75   76   77   78   79   80   81