Page 76 - Read Online
P. 76
Liu et al. Soft Sci 2024;4:44 https://dx.doi.org/10.20517/ss.2024.59 Page 19 of 21
copolymers. ACS Appl Energy Mater 2023;6:10147-54. DOI
78. Peng P, Zhou J, Liang L, et al. Regulating thermogalvanic effect and mechanical robustness via redox ions for flexible quasi-solid-
state thermocells. Nano Micro Lett 2022;14:81. DOI PubMed PMC
79. Kim T, Lee JS, Lee G, et al. High thermopower of ferri/ferrocyanide redox couple in organic-water solutions. Nano Energy
2017;31:160-7. DOI
80. DiSalvo FJ. Thermoelectric cooling and power generation. Science 1999;285:703-6. DOI PubMed
81. Han C, Zhu Y, Yang L, et al. Remarkable high-temperature ionic thermoelectric performance induced by graphene in gel thermocells.
Energy Environ Sci 2024;17:1559-69. DOI
82. Zhu Y, Han C, Chen J, et al. Ultra-high performance of ionic thermoelectric-electrochemical gel cells for harvesting low grade heat.
Energy Environ Sci 2024;17:4104-14. DOI
83. Kong S, Huang Z, Hu Y, et al. Tellurium-nanowire-doped thermoelectric hydrogel with high stretchability and seebeck coefficient for
low-grade heat energy harvesting. Nano Energy 2023;115:108708. DOI
84. Liu Y, Chen X, Dong X, Liu A, Ouyang K, Huang Y. Recurrently gellable and thermochromic inorganic hydrogel thermogalvanic
cells. Sci Adv 2024;10:eadp4533. DOI PubMed PMC
85. Chen J, Shi C, Wu L, et al. Environmentally tolerant ionic hydrogel with high power density for low-grade heat harvesting. ACS Appl
Mater Interfaces 2022;14:34714-21. DOI PubMed
86. Chen B, Chen Q, Xiao S, Feng J, Zhang X, Wang T. Giant negative thermopower of ionic hydrogel by synergistic coordination and
hydration interactions. Sci Adv 2021;7:eabi7233. DOI PubMed PMC
87. Li N, Liu W, Zheng X, et al. Antimicrobial hydrogel with multiple pH-responsiveness for infected burn wound healing. Nano Res
2023;16:11139-48. DOI
88. Wang L, Chen P, Pan Y, et al. Injectable photocurable Janus hydrogel delivering hiPSC cardiomyocyte-derived exosome for post-
heart surgery adhesion reduction. Sci Adv 2023;9:eadh1753. DOI PubMed PMC
89. Li X, Xiao X, Bai C, et al. Thermogalvanic hydrogels for self-powered temperature monitoring in extreme environments. J Mater
Chem C 2022;10:13789-96. DOI
90. Quickenden TI, Mua Y. A review of power generation in aqueous thermogalvanic cells. J Electrochem Soc 1995;142:3985-94. DOI
91. Hu R, Xu D, Luo X. Liquid thermocells enable low-grade heat harvesting. Matter 2020;3:1400-2. DOI
92. Yang P, Liu K, Chen Q, et al. Wearable thermocells based on gel electrolytes for the utilization of body heat. Angew Chem Int Ed
Engl 2016;55:12050-3. DOI PubMed
93. Jin L, Greene GW, Macfarlane DR, Pringle JM. Redox-active quasi-solid-state electrolytes for thermal energy harvesting. ACS
Energy Lett 2016;1:654-8. DOI
94. Yu B, Duan J, Li J, et al. All-day thermogalvanic cells for environmental thermal energy harvesting. Research 2019;2019:2460953.
DOI PubMed PMC
95. Meng FL, Gao M, Ding T, Yilmaz G, Ong WL, Ho GW. Modular deformable steam electricity cogeneration system with
photothermal, water, and electrochemical tunable multilayers. Adv Funct Mater 2020;30:2002867. DOI
96. Schönig M, Schuster R. Sensitive and fast measurement of surface temperature with a thermogalvanic cell. Appl Phys Lett
2020;116:091601. DOI
2+ 3+
97. Inoue D, Niwa H, Nitani H, Moritomo Y. Scaling relation between electrochemical seebeck coefficient for Fe /Fe in organic
solvent and its viscosity. J Phys Soc Jpn 2021;90:033602. DOI
98. Fang R, Li X, Khan S A et al. Anhydrous thermogalvanic Gel for simultaneous waste heat recovery and thermal management of
electronics. ACS Appl Polym Mater 2023;5:4628-35. DOI
99. Jiao N, Abraham TJ, Macfarlane DR, Pringle JM. Ionic liquid electrolytes for thermal energy harvesting using a cobalt redox couple.
J Electrochem Soc 2014;161:D3061-5. DOI
100. Lazar MA, Al-Masri D, MacFarlane DR, Pringle JM. Enhanced thermal energy harvesting performance of a cobalt redox couple in
ionic liquid-solvent mixtures. Phys Chem Chem Phys 2016;18:1404-10. DOI PubMed
101. He J, Al-Masri D, MacFarlane DR, Pringle JM. Temperature dependence of the electrode potential of a cobalt-based redox couple in
ionic liquid electrolytes for thermal energy harvesting. Faraday Discuss 2016;190:205-18. DOI PubMed
102. Li J, Chen S, Han Z, et al. High performance bacterial cellulose organogel-based thermoelectrochemical cells by organic solvent-
driven crystallization for body heat harvest and self-powered wearable strain sensors. Adv Funct Mater 2023;33:2306509. DOI
-
-
103. Liang Y, Ka-ho Hui J, Morikawa M, Inoue H, Yamada T, Kimizuka N. High positive seebeck coefficient of aqueous i /i thermocells
3
based on host-guest interactions and LCST behavior of PEGylated α-Cyclodextrin. ACS Appl Energy Mater 2021;4:5326-31. DOI
104. Artyukhov D, Kiselev N, Gorshkov N, et al. Harvesting waste thermal energy using a surface-modified carbon fiber-based thermo-
electrochemical cell. Sustainability 2021;13:1377. DOI
105. Kang TJ, Fang S, Kozlov ME, et al. Electrical power from nanotube and graphene electrochemical thermal energy harvesters. Adv
Funct Mater 2012;22:477-89. DOI
106. Abraham TJ, Tachikawa N, MacFarlane DR, Pringle JM. Investigation of the kinetic and mass transport limitations in
thermoelectrochemical cells with different electrode materials. Phys Chem Chem Phys 2014;16:2527-32. DOI PubMed
107. Laux E, Uhl S, Journot T, Brossard J, Jeandupeux L, Keppner H. Aspects of protonic ionic liquid as electrolyte in thermoelectric
generators. J Electron Mater 2016;45:3383-9. DOI
108. Im H, Kim T, Song H, et al. High-efficiency electrochemical thermal energy harvester using carbon nanotube aerogel sheet

