Page 74 - Read Online
P. 74
Liu et al. Soft Sci 2024;4:44 https://dx.doi.org/10.20517/ss.2024.59 Page 17 of 21
18. Hong M, Sun S, Lyu W, et al. Advances in printing techniques for thermoelectric materials and devices. Soft Sci 2023;3:29. DOI
19. Shen L, Liu M, Liu P, et al. A lamellar-ordered poly[bi(3,4-ethylenedioxythiophene)-alt-thienyl] for efficient tuning of thermopower
without degenerated conductivity. Soft Sci 2023;3:20. DOI
20. He J, Tritt TM. Advances in thermoelectric materials research: looking back and moving forward. Science 2017;357:eaak9997. DOI
PubMed
21. Zong Y, Li H, Li X, et al. Bacterial cellulose-based hydrogel thermocells for low-grade heat harvesting. Chem Eng J
2022;433:134550. DOI
22. Guo M, Cui H, Guo W, et al. Achieving superior thermoelectric performance in Ge Se Te via symmetry manipulation with I-V-VI
4 3 2
alloying. Adv Funct Mater 2024;34:2313720. DOI
23. Liu Z, Cheng H, He H, Li J, Ouyang J. Significant enhancement in the thermoelectric properties of ionogels through solid network
engineering. Adv Funct Mater 2022;32:2109772. DOI
24. Rehan M, Cho A, Jeong I, et al. Defect engineering in earth-abundant Cu ZnSnSe absorber using efficient alkali doping for flexible
2
4
and tandem solar cell applications. Energy Environ Mater 2024;7:e12604. DOI
25. Ming H, Luo ZZ, Chen Z, et al. Chemical pressure-driven band convergence and discordant atoms intensify phonon scattering
leading to high thermoelectric performance in SnTe. J Am Chem Soc 2024;Online ahead of print. DOI PubMed
26. Chen Z, Cui H, Hao S, et al. GaSb doping facilitates conduction band convergence and improves thermoelectric performance in n-
type PbS. Energy Environ Sci 2023;16:1676-84. DOI
27. Satoh N, Otsuka M, Kawakita J, Mori T. A hierarchical design for thermoelectric hybrid materials: Bi Te particles covered by partial
2 3
Au skins enhance thermoelectric performance in sticky thermoelectric materials. Soft Sci 2022;2:15. DOI
28. He W, Wang D, Wu H, et al. High thermoelectric performance in low-cost SnS 0.91 Se 0.09 crystals. Science 2019;365:1418-24. DOI
PubMed
29. Dupont MF, MacFarlane DR, Pringle JM. Thermo-electrochemical cells for waste heat harvesting - progress and perspectives. Chem
Commun 2017;53:6288-302. DOI PubMed
30. Yu B, Duan J, Cong H, et al. Thermosensitive crystallization-boosted liquid thermocells for low-grade heat harvesting. Science
2020;370:342-6. DOI PubMed
31. Han Y, Zhang J, Hu R et al. High-thermopower polarized electrolytes enabled by methylcellulose for low-grade heat harvesting. Sci
Adv 2022;8:eabl5318. DOI PubMed PMC
32. Lu X, Xie D, Zhu K, et al. Swift assembly of adaptive thermocell arrays for device-level healable and energy-autonomous motion
sensors. Nanomicro Lett 2023;15:196. DOI PubMed PMC
33. Zhang D, Mao Y, Ye F, et al. Stretchable thermogalvanic hydrogel thermocell with record-high specific output power density enabled
by ion-induced crystallization. Energy Environ Sci 2022;15:2974-82. DOI
34. Li Q, Han C, Wang S, et al. Anionic entanglement-induced giant thermopower in ionic thermoelectric material Gelatin-CF SO K-
3 3
CH SO K. eScience 2023;3:100169. DOI
3
3
35. Shi X, Ma L, Li Y, et al. Double hydrogen-bonding reinforced high-performance supramolecular hydrogel thermocell for self-
powered sensing remote-controlled by light. Adv Funct Mater 2023;33:2211720. DOI
36. Liu C, Wang S, Feng SP, Fang NX. Portable green energy out of the blue: hydrogel-based energy conversion devices. Soft Sci 2023;
3:10. DOI
37. Li T, Zhang X, Lacey SD, et al. Cellulose ionic conductors with high differential thermal voltage for low-grade heat harvesting. Nat
Mater 2019;18:608-13. DOI
38. Han CG, Qian X, Li Q, et al. Giant thermopower of ionic gelatin near room temperature. Science 2020;368:1091-8. DOI PubMed
39. Zhang J, Bai C, Wang Z, Liu X, Li X, Cui X. Low-grade thermal energy harvesting and self-powered sensing based on
thermogalvanic hydrogels. Micromachines 2023;14:155. DOI PubMed PMC
40. Duan J, Feng G, Yu B, et al. Aqueous thermogalvanic cells with a high Seebeck coefficient for low-grade heat harvest. Nat Commun
2018;9:5146. DOI PubMed PMC
41. Lin Y, Hsu C, Hong S, et al. Highly conductive triple network hydrogel thermoelectrochemical cells with low-grade heat harvesting.
J Power Sources 2024;609:234647. DOI
42. Hu J, Wei J, Li J, Bai L, Liu Y, Li Z. Double selective ionic gel with excellent thermopower and ultra-high energy density for low-
quality thermal energy harvesting. Energy Environ Sci 2024;17:1664-76. DOI
43. Li Q, Yu D, Wang S, et al. High thermopower of agarose-based ionic thermoelectric Gel through micellization effect decoupling the
cation/anion thermodiffusion. Adv Funct Mater 2023;33:2305835. DOI
44. Zhang Z, Fu H, Li Z, et al. Hydrogel materials for sustainable water resources harvesting & treatment: synthesis, mechanism and
applications. Chem Eng J 2022;439:135756. DOI
45. Li L, Wu P, Yu F, Ma J. Double network hydrogels for energy/environmental applications: challenges and opportunities. J Mater
Chem A 2022;10:9215-47. DOI
46. Huang H, Dong Z, Ren X, et al. High-strength hydrogels: fabrication, reinforcement mechanisms, and applications. Nano Res
2023;16:3475-515. DOI
47. Yan X, Huang H, Bakry AM, Wu W, Liu X, Liu F. Advances in enhancing the mechanical properties of biopolymer hydrogels via
multi-strategic approaches. Int J Biol Macromol 2024;272:132583. DOI PubMed
48. Wang Y, Xiang Y, Huang Q, et al. High-strength ionic hydrogel constructed by metal-free physical crosslinking strategy for

