Page 74 - Read Online
P. 74

Liu et al. Soft Sci 2024;4:44  https://dx.doi.org/10.20517/ss.2024.59           Page 17 of 21

               18.       Hong M, Sun S, Lyu W, et al. Advances in printing techniques for thermoelectric materials and devices. Soft Sci 2023;3:29.  DOI
               19.       Shen L, Liu M, Liu P, et al. A lamellar-ordered poly[bi(3,4-ethylenedioxythiophene)-alt-thienyl] for efficient tuning of thermopower
                    without degenerated conductivity. Soft Sci 2023;3:20.  DOI
               20.       He J, Tritt TM. Advances in thermoelectric materials research: looking back and moving forward. Science 2017;357:eaak9997.  DOI
                    PubMed
               21.       Zong  Y,  Li  H,  Li  X,  et  al.  Bacterial  cellulose-based  hydrogel  thermocells  for  low-grade  heat  harvesting.  Chem  Eng  J
                    2022;433:134550.  DOI
               22.       Guo M, Cui H, Guo W, et al. Achieving superior thermoelectric performance in Ge Se  Te via symmetry manipulation with I-V-VI
                                                                          4  3                           2
                    alloying. Adv Funct Mater 2024;34:2313720.  DOI
               23.       Liu Z, Cheng H, He H, Li J, Ouyang J. Significant enhancement in the thermoelectric properties of ionogels through solid network
                    engineering. Adv Funct Mater 2022;32:2109772.  DOI
               24.       Rehan M, Cho A, Jeong I, et al. Defect engineering in earth-abundant Cu  ZnSnSe  absorber using efficient alkali doping for flexible
                                                                   2
                                                                         4
                    and tandem solar cell applications. Energy Environ Mater 2024;7:e12604.  DOI
               25.       Ming H, Luo ZZ, Chen Z, et al. Chemical pressure-driven band convergence and discordant atoms intensify phonon scattering
                    leading to high thermoelectric performance in SnTe. J Am Chem Soc 2024;Online ahead of print.  DOI  PubMed
               26.       Chen Z, Cui H, Hao S, et al. GaSb doping facilitates conduction band convergence and improves thermoelectric performance in n-
                    type PbS. Energy Environ Sci 2023;16:1676-84.  DOI
               27.       Satoh N, Otsuka M, Kawakita J, Mori T. A hierarchical design for thermoelectric hybrid materials: Bi Te  particles covered by partial
                                                                                     2  3
                    Au skins enhance thermoelectric performance in sticky thermoelectric materials. Soft Sci 2022;2:15.  DOI
               28.       He W, Wang D, Wu H, et al. High thermoelectric performance in low-cost SnS 0.91 Se 0.09  crystals. Science 2019;365:1418-24.  DOI
                    PubMed
               29.       Dupont MF, MacFarlane DR, Pringle JM. Thermo-electrochemical cells for waste heat harvesting - progress and perspectives. Chem
                    Commun 2017;53:6288-302.  DOI  PubMed
               30.       Yu B, Duan J, Cong H, et al. Thermosensitive crystallization-boosted liquid thermocells for low-grade heat harvesting. Science
                    2020;370:342-6.  DOI  PubMed
               31.       Han Y, Zhang J, Hu R et al. High-thermopower polarized electrolytes enabled by methylcellulose for low-grade heat harvesting. Sci
                    Adv 2022;8:eabl5318.  DOI  PubMed  PMC
               32.       Lu X, Xie D, Zhu K, et al. Swift assembly of adaptive thermocell arrays for device-level healable and energy-autonomous motion
                    sensors. Nanomicro Lett 2023;15:196.  DOI  PubMed  PMC
               33.       Zhang D, Mao Y, Ye F, et al. Stretchable thermogalvanic hydrogel thermocell with record-high specific output power density enabled
                    by ion-induced crystallization. Energy Environ Sci 2022;15:2974-82.  DOI
               34.       Li Q, Han C, Wang S, et al. Anionic entanglement-induced giant thermopower in ionic thermoelectric material Gelatin-CF SO K-
                                                                                                     3  3
                    CH SO K. eScience 2023;3:100169.  DOI
                      3
                         3
               35.       Shi X, Ma L, Li Y, et al. Double hydrogen-bonding reinforced high-performance supramolecular hydrogel thermocell for self-
                    powered sensing remote-controlled by light. Adv Funct Mater 2023;33:2211720.  DOI
               36.       Liu C, Wang S, Feng SP, Fang NX. Portable green energy out of the blue: hydrogel-based energy conversion devices. Soft Sci 2023;
                    3:10. DOI
               37.       Li T, Zhang X, Lacey SD, et al. Cellulose ionic conductors with high differential thermal voltage for low-grade heat harvesting. Nat
                    Mater 2019;18:608-13.  DOI
               38.       Han CG, Qian X, Li Q, et al. Giant thermopower of ionic gelatin near room temperature. Science 2020;368:1091-8.  DOI  PubMed
               39.       Zhang J, Bai C, Wang Z, Liu X, Li X, Cui X. Low-grade thermal energy harvesting and self-powered sensing based on
                    thermogalvanic hydrogels. Micromachines 2023;14:155.  DOI  PubMed  PMC
               40.       Duan J, Feng G, Yu B, et al. Aqueous thermogalvanic cells with a high Seebeck coefficient for low-grade heat harvest. Nat Commun
                    2018;9:5146.  DOI  PubMed  PMC
               41.       Lin Y, Hsu C, Hong S, et al. Highly conductive triple network hydrogel thermoelectrochemical cells with low-grade heat harvesting.
                    J Power Sources 2024;609:234647.  DOI
               42.       Hu J, Wei J, Li J, Bai L, Liu Y, Li Z. Double selective ionic gel with excellent thermopower and ultra-high energy density for low-
                    quality thermal energy harvesting. Energy Environ Sci 2024;17:1664-76.  DOI
               43.       Li Q, Yu D, Wang S, et al. High thermopower of agarose-based ionic thermoelectric Gel through micellization effect decoupling the
                    cation/anion thermodiffusion. Adv Funct Mater 2023;33:2305835.  DOI
               44.       Zhang Z, Fu H, Li Z, et al. Hydrogel materials for sustainable water resources harvesting & treatment: synthesis, mechanism and
                    applications. Chem Eng J 2022;439:135756.  DOI
               45.       Li L, Wu P, Yu F, Ma J. Double network hydrogels for energy/environmental applications: challenges and opportunities. J Mater
                    Chem A 2022;10:9215-47.  DOI
               46.       Huang H, Dong Z, Ren X, et al. High-strength hydrogels: fabrication, reinforcement mechanisms, and applications. Nano Res
                    2023;16:3475-515.  DOI
               47.       Yan X, Huang H, Bakry AM, Wu W, Liu X, Liu F. Advances in enhancing the mechanical properties of biopolymer hydrogels via
                    multi-strategic approaches. Int J Biol Macromol 2024;272:132583.  DOI  PubMed
               48.       Wang Y, Xiang Y, Huang Q, et al. High-strength ionic hydrogel constructed by metal-free physical crosslinking strategy for
   69   70   71   72   73   74   75   76   77   78   79