Page 77 - Read Online
P. 77
Page 20 of 21 Liu et al. Soft Sci 2024;4:44 https://dx.doi.org/10.20517/ss.2024.59
electrodes. Nat Commun 2016;7:10600. DOI PubMed PMC
109. Tian C, Bai C, Wang T, et al. Thermogalvanic hydrogel electrolyte for harvesting biothermal energy enabled by a novel redox couple
of SO4/32- ions. Nano Energy 2023;106:108077. DOI
110. Li J, Wang Z, Khan SA, Li N, Huang Z, Zhang H. Self-powered information conversion based on thermogalvanic hydrogel with
interpenetrating networks for nursing aphasic patients. Nano Energy 2023;113:108612. DOI
111. Li J, Xu T, Ma Z, et al. Self-healable and stretchable PAAc/XG/Bi Se Te hybrid hydrogel thermoelectric materials. Energy
2 0.3 2.7
Environ Mater 2024;7:e12547. DOI
112. Fu M, Wu Z, Liu X, Yuan Y, Lai X, Yue K. Highly stretchable ionic hydrogels with enhanced thermoelectric performance and flame
retardancy for intelligent fire protection. J Mater Chem A 2024;12:27588-97. DOI
113. Hu Q, Li H, Chen X, et al. Strong tough ionic organohydrogels with negative thermopower via the synergy of coordination
interaction and hofmeister effect. Adv Funct Mater 2024;34:2406968. DOI
114. Lyu X, Lin Z, Huang C, et al. Tough and elastic hydrogel thermocells for heat energy utilization. Chem Eng J 2024;493:152887.
DOI
115. Zhang L, Shi X, Yang Y, Chen Z. Flexible thermoelectric materials and devices: From materials to applications. Mater Today
2021;46:62-108. DOI
116. Yang M, Hu Y, Wang X, et al. Chaotropic effect-boosted thermogalvanic ionogel thermocells for all-weather power generation. Adv
Mater 2024;36:e2312249. DOI PubMed
117. Ma X, Wang W, Cui X, et al. Machine learning assisted self-powered identity recognition based on thermogalvanic hydrogel for
intelligent security. Small 2024;20:e2402700. DOI PubMed
118. Lu X, Mo Z, Liu Z, et al. Robust, efficient, and recoverable thermocells with zwitterion-boosted hydrogel electrolytes for energy-
autonomous and wearable sensing. Angew Chem Int Ed Engl 2024;63:e202405357. DOI PubMed
119. Zhao J, Wu X, Yu H, et al. Regenerable aerogel based thermogalvanic cells for efficient low-grade heat harvesting from solar
radiation and interfacial solar evaporation systems. EcoMat 2023;5:e12302. DOI
120. Liang L, Lv H, Shi XL, et al. A flexible quasi-solid-state thermoelectrochemical cell with high stretchability as an energy-
autonomous strain sensor. Mater Horiz 2021;8:2750-60. DOI PubMed
121. Han Y, Wei H, Du Y, et al. Ultrasensitive flexible thermal sensor arrays based on high-thermopower ionic thermoelectric hydrogel.
Adv Sci 2023;10:e2302685. DOI PubMed PMC
122. Fu M, Sun Z, Liu X, et al. Highly stretchable, resilient, adhesive, and self healing ionic hydrogels for thermoelectric application.
Adv Funct Mater 2023;33:2306086. DOI
123. Wang Z, Xue R, Zhang H, et al. A hydrogel electrolyte toward a flexible zinc-ion battery and multifunctional health monitoring
electronics. ACS Nano 2024;18:7596-609. DOI PubMed
124. Wu G, Xue Y, Wang L, Wang X, Chen G. Flexible gel-state thermoelectrochemical materials with excellent mechanical and
2+
4+
thermoelectric performances based on incorporating Sn /Sn electrolyte into polymer/carbon nanotube composites†. J Mater Chem
A 2018;6:3376-80. DOI
125. Zhao Q, Liu J, Wu Z, et al. Robust PEDOT:PSS-based hydrogel for highly efficient interfacial solar water purification. Chem Eng J
2022;442:136284. DOI
126. Xu X, Liu Q, Qiu J, et al. Photothermal-photocatalytic bifunctional highly porous hydrogel for efficient coherent sewage purification-
clean water generation. Desalination 2025;597:118364. DOI
127. Pu S, Liao Y, Chen K, et al. Thermogalvanic hydrogel for synchronous evaporative cooling and low-grade heat energy harvesting.
Nano Lett 2020;20:3791-7. DOI PubMed
128. Fu X, Zhuang Z, Zhao Y, et al. Stretchable and self-powered temperature-pressure dual sensing ionic skins based on thermogalvanic
hydrogels. ACS Appl Mater Interfaces 2022;14:44792-8. DOI PubMed
129. Tian Y, Yang X, Li K, et al. High-performance ionic thermoelectric materials and emerging applications of ionic thermoelectric
devices. Mater Today Energy 2023;36:101342. DOI
130. Sun W, Zhang P, Lin X, et al. Heat source recognition sensor mimicking the thermosensation function of human skin. The Innovation
2024;5:100673. DOI
131. Wang Z, Li N, Yang X, Zhang Z, Zhang H, Cui X. Thermogalvanic hydrogel-based e-skin for self-powered on-body dual-modal
temperature and strain sensing. Microsyst Nanoeng 2024;10:55. DOI PubMed PMC
132. Wu X, Gao N, Zheng X, et al. Self-powered and green ionic-type thermoelectric paper chips for early fire alarming. ACS Appl Mater
Interfaces 2020;12:27691-9. DOI PubMed
133. Zhang Y, Wang H, Ahmed Khan S, et al. Deep-learning-assisted thermogalvanic hydrogel fiber sensor for self-powered in-nostril
respiratory monitoring. J Colloid Interface Sci 2025;678:143-9. DOI PubMed
134. Chen L, Lou J, Rong X, et al. Super-stretching and high-performance ionic thermoelectric hydrogels based on carboxylated bacterial
cellulose coordination for self-powered sensors. Carbohydr Polym 2023;321:121310. DOI PubMed
135. Tian C, Khan SA, Zhang Z, Cui X, Zhang H. Thermoelectric hydrogel electronic skin for passive multimodal physiological
perception. ACS Sens 2024;9:840-8. DOI PubMed
136. Yang H, Ahmed Khan S, Li N, Fang R, Huang Z, Zhang H. Thermogalvanic gel patch for self-powered human motion recognition
enabled by photo-thermal-electric conversion. Chem Eng J 2023;473:145247. DOI
137. Zhang Y, Li S, Zhang J, et al. Thermoelectrocatalysis: an emerging strategy for converting waste heat into chemical energy. Natl Sci

