Page 75 - Read Online
P. 75
Page 18 of 21 Liu et al. Soft Sci 2024;4:44 https://dx.doi.org/10.20517/ss.2024.59
enhanced uranium extraction from seawater. Chem Eng J 2024;479:147875. DOI
49. Yang J, Chen Y, Zhao L, Zhang J, Luo H. Constructions and properties of physically cross-linked hydrogels based on natural
polymers. Polym Rev 2023;63:574-612. DOI
50. GhavamiNejad A, Ashammakhi N, Wu XY, Khademhosseini A. Crosslinking strategies for 3D bioprinting of polymeric hydrogels.
Small 2020;16:e2002931. DOI PubMed PMC
51. Yuan Y, Shen S, Fan D. A physicochemical double cross-linked multifunctional hydrogel for dynamic burn wound healing: shape
adaptability, injectable self-healing property and enhanced adhesion. Biomaterials 2021;276:120838. DOI PubMed
52. Ettoumi F, Huang H, Xu Y, et al. Supramolecular assembly of dual crosslinked nanocomposite polysaccharides hydrogel: integration
of injectable, self-healing, and pH-responsive platform for sustained delivery of polyphenols. Food Hydrocoll 2024;154:110108.
DOI
53. Li W, Wang X, Liu Z, et al. Nanoconfined polymerization limits crack propagation in hysteresis-free gels. Nat Mater 2024;23:131-8.
DOI PubMed
54. Zhan W, Zhang H, Lyu X, Luo Z, Yu Y, Zou Z. An ultra-tough and super-stretchable ionogel with multi functions towards flexible
iontronics. Sci China Mater 2023;66:1539-50. DOI
55. Gong Y, Yu L, Lyu X, et al. A mechanically robust, self-healing, and adhesive biomimetic camouflage ionic conductor for aquatic
environments. Adv Funct Mater 2023;33:2305314. DOI
56. Zhang D, Fang Y, Liu L, et al. Boosting thermoelectric performance of thermogalvanic hydrogels by structure engineering induced
by liquid nitrogen quenching. Adv Energy Mater 2024;14:2303358. DOI
57. Sang S, Bai C, Wang W, et al. Finger temperature-driven thermogalvainc gel-based smart pen: utilized for identity recognition, stroke
analysis, and grip posture assessment. Nano Energy 2024;123:109366. DOI
58. Cheng H, Le Q, Liu Z, Qian Q, Zhao Y, Ouyang J. Ionic thermoelectrics: principles, materials and applications. J Mater Chem C
2022;10:433-50. DOI
59. Yu M, Li H, Li Y, et al. Ionic thermoelectric gels and devices: progress, opportunities, and challenges. EnergyChem 2024;6:100123.
DOI
60. Qian X, Ma Z, Huang Q, Jiang H, Yang R. Thermodynamics of ionic thermoelectrics for low-grade heat harvesting. ACS Energy Lett
2024;9:679-706. DOI
61. Li Z, Jiang J, He X, Wang C, Niu Y. Recent progress on the thermoelectric effect for electrochemistry. J Mater Chem A
2024;12:13623-46. DOI
62. Liu Y, Cui M, Ling W, et al. Thermo-electrochemical cells for heat to electricity conversion: from mechanisms, materials, strategies
to applications. Energy Environ Sci 2022;15:3670-87. DOI
63. Liu L, Zhang D, Bai P, et al. Strong tough thermogalvanic hydrogel thermocell with extraordinarily high thermoelectric performance.
Adv Mater 2023;35:e2300696. DOI PubMed
64. Wei S, Ma J, Wu D, et al. Constructing flexible film electrode with porous layered structure by MXene/SWCNTs/PANI ternary
composite for efficient low-grade thermal energy harvest. Adv Funct Mater 2023;33:2209806. DOI
65. Wang Y, Zhang Y, Xin X, et al. In situ photocatalytically enhanced thermogalvanic cells for electricity and hydrogen production.
Science 2023;381:291-6. DOI PubMed
2+ 3+
66. Liu Y, Zhang Q, Odunmbaku GO, et al. Solvent effect on the Seebeck coefficient of Fe /Fe hydrogel thermogalvanic cells†. J
Mater Chem A 2022;10:19690-8. DOI
67. Jia B, Wu D, Xie L, et al. Pseudo-nanostructure and trapped-hole release induce high thermoelectric performance in PbTe. Science
2024;384:81-6. DOI PubMed
68. Liu H, Shi X, Pan L, et al. Rational triple optimizations boost near-room-temperature thermoelectric performance of BiSe. Acta
Mater 2024;280:120343. DOI
69. Liu Y, Jiang Q, Zhang J, et al. Green synthesis of air-stable tellurium nanowires via biomolecule-assisted hydrothermal for
thermoelectrics†. Mater Adv 2020;1:1125-33. DOI
70. Buckingham MA, Zhang S, Liu Y, Chen J, Marken F, Aldous L. Thermogalvanic and thermocapacitive behavior of superabsorbent
hydrogels for combined low-temperature thermal energy conversion and harvesting. ACS Appl Energy Mater 2021;4:11204-14. DOI
71. Yang X, Zhang Z, Khan SA, et al. Thermogalvanic organohydrogel-based non-contact self-powered electronics for advancing smart
agriculture. J Mater Chem C 2024;12:3298-305. DOI
72. Zhou H, Yamada T, Kimizuka N. Supramolecular thermo-electrochemical cells: enhanced thermoelectric performance by host-guest
complexation and salt-induced crystallization. J Am Chem Soc 2016;138:10502-7. DOI PubMed
73. Liu Y, Yin L, Chen S, et al. A hydrogel thermoelectrochemical cell with high self-healability and enhanced thermopower both
induced by zwitterions. J Mater Chem A 2024;12:18582-92. DOI
74. Hsu C, Lin Y, Hong S, et al. 3D printed gelatin methacrylate hydrogel-based wearable thermoelectric generators. Adv Sustain Syst
2024;8:2400039. DOI
75. Xu T, Tao Y, Qian Y, et al. Semi-solid thermo-electrochemical cell based wearable power generator for body heat harvesting. Adv
Funct Mater 2024;34:2316068. DOI
76. Jia Y, Zhang S, Li J, et al. Coordination enhanced high-seebeck coefficient n-type gel-based thermocells for low-grade energy
harvesting and n-p type connected devices. J Power Sources 2024;602:234400. DOI
77. Shen X, Wu J, Hua Z, Liu G. p-n conversion of thermogalvanic cells by harnessing the micellization of thermoresponsive diblock

