Page 56 - Read Online
P. 56
Zhang et al. Soft Sci 2024;4:39 https://dx.doi.org/10.20517/ss.2024.34 Page 27 of 28
72. Sheng F, Zhao C, Zhang B, Tan Y, Dong K. Flourishing electronic textiles towards pervasive, personalized and intelligent healthcare.
Soft Sci 2024;4:2. DOI
73. Liu Y, Wang C, Xue J, et al. Body temperature enhanced adhesive, antibacterial, and recyclable ionic hydrogel for epidermal
electrophysiological monitoring. Adv Healthc Mater 2022;11:e2200653. DOI PubMed
74. Han M, Yildiz E, Kaleli HN, et al. Tissue-like optoelectronic neural interface enabled by PEDOT:PSS hydrogel for cardiac and
neural stimulation. Adv Healthc Mater 2022;11:e2102160. DOI PubMed
75. Kleber C, Lienkamp K, Rühe J, Asplund M. Electrochemically controlled drug release from a conducting polymer hydrogel
(PDMAAp/PEDOT) for local therapy and bioelectronics. Adv Healthc Mater 2019;8:e1801488. DOI PubMed
76. Kim SD, Park K, Lee S, et al. Injectable and tissue-conformable conductive hydrogel for MRI-compatible brain-interfacing
electrodes. Soft Sci 2023;3:18. DOI
77. Hao M, Li L, Wang S, et al. Stretchable, self-healing, transient macromolecular elastomeric gel for wearable electronics. Microsyst
Nanoeng 2019;5:9. DOI PubMed PMC
78. Yuk H, Zhang T, Lin S, Parada GA, Zhao X. Tough bonding of hydrogels to diverse non-porous surfaces. Nat Mater 2016;15:190-6.
DOI PubMed PMC
79. Park B, Shin JH, Ok J, et al. Cuticular pad-inspired selective frequency damper for nearly dynamic noise-free bioelectronics. Science
2022;376:624-9. DOI PubMed
80. Li X, Sun Y, Wang S, et al. Body temperature-triggered adhesive ionic conductive hydrogels for bioelectrical signal monitoring.
Chem Eng J 2024;498:155195. DOI
81. Xue H, Wang D, Jin M, et al. Hydrogel electrodes with conductive and substrate-adhesive layers for noninvasive long-term EEG
acquisition. Microsyst Nanoeng 2023;9:79. DOI PubMed PMC
82. Shin Y, Lee HS, Hong YJ, et al. Low-impedance tissue-device interface using homogeneously conductive hydrogels chemically
bonded to stretchable bioelectronics. Sci Adv 2024;10:eadi7724. DOI PubMed PMC
83. Zhang Q, Lu H, Yun G, et al. A laminated gravity-driven liquid metal-doped hydrogel of unparalleled toughness and conductivity.
Adv Funct Mater 2024;34:2308113. DOI
84. Hao M, Wang Y, Li L, et al. Tough engineering hydrogels based on swelling-freeze-thaw method for artificial cartilage. ACS Appl
Mater Interfaces 2022;14:25093-103. DOI PubMed
85. Wei W, Hao M, Zhou K, et al. In situ multimodal transparent electrophysiological hydrogel for in vivo miniature two-photon
neuroimaging and electrocorticogram analysis. Acta Biomater 2022;152:86-99. DOI PubMed
86. Zhu T, Jiang C, Wang M, Zhu C, Zhao N, Xu J. Skin-inspired double-hydrophobic-coating encapsulated hydrogels with enhanced
water retention capacity. Adv Funct Mater 2021;31:2102433. DOI
87. Wu S, Liu Z, Gong C, et al. Spider-silk-inspired strong and tough hydrogel fibers with anti-freezing and water retention properties.
Nat Commun 2024;15:4441. DOI PubMed PMC
88. Lan L, Ping J, Li H, et al. Skin-inspired all-natural biogel for bioadhesive interface. Adv Mater 2024;36:e2401151. DOI PubMed
89. Dou X, Wang H, Yang F, Shen H, Wang X, Wu D. One-step soaking strategy toward anti-swelling hydrogels with a stiff “armor”.
Adv Sci 2023;10:e2206242. DOI PubMed PMC
90. Li N, Yu Q, Duan S, et al. Anti-swelling, high-strength, anisotropic conductive hydrogel with excellent biocompatibility for
implantable electronic tendon. Adv Funct Mater 2024;34:2309500. DOI
91. Zhang Z, Yao A, Raffa P. Transparent, highly stretchable, self-healing, adhesive, freezing-tolerant, and swelling-resistant
multifunctional hydrogels for underwater motion detection and information transmission. Adv Funct Mater 2024:2407529. DOI
92. Wei H, Wang Z, Zhang H, et al. Ultrastretchable, highly transparent, self-adhesive, and 3D-printable ionic hydrogels for multimode
tactical sensing. Chem Mater 2021;33:6731-42. DOI
93. Zeng T, Wu Y, Lei M. Review: developments and challenges of advanced flexible electronic materials for medical monitoring
applications. Adv Compos Hybrid Mater 2024;7:949. DOI
94. Liu J, Lin S, Li W, et al. Ten-hour stable noninvasive brain-computer interface realized by semidry hydrogel-based electrodes.
Research 2022;2022:9830457. DOI PubMed PMC
95. Li G, Liu Y, Chen Y, et al. Robust, self-adhesive, and low-contact impedance polyvinyl alcohol/polyacrylamide dual-network
hydrogel semidry electrode for biopotential signal acquisition. SmartMat 2024;5:e1173. DOI
96. Wang F, Ma M, Fu R, Zhang X. EEG-based detection of driving fatigue using a novel electrode. Sensor Actuat A Phys
2024;365:114895. DOI
97. Luo J, Sun C, Chang B, et al. MXene-enabled self-adaptive hydrogel interface for active electroencephalogram interactions. ACS
Nano 2022;16:19373-84. DOI
98. Wang X, Sun X, Gan D, et al. Bioadhesive and conductive hydrogel-integrated brain-machine interfaces for conformal and immune-
evasive contact with brain tissue. Matter 2022;5:1204-23. DOI
99. Adewole DO, Struzyna LA, Burrell JC, et al. Development of optically controlled “living electrodes” with long-projecting axon tracts
for a synaptic brain-machine interface. Sci Adv 2021;7:eaay5347. DOI PubMed PMC
100. Park S, Yuk H, Zhao R, et al. Adaptive and multifunctional hydrogel hybrid probes for long-term sensing and modulation of neural
activity. Nat Commun 2021;12:3435. DOI PubMed PMC

