Page 56 - Read Online
P. 56

Zhang et al. Soft Sci 2024;4:39  https://dx.doi.org/10.20517/ss.2024.34         Page 27 of 28

               72.       Sheng F, Zhao C, Zhang B, Tan Y, Dong K. Flourishing electronic textiles towards pervasive, personalized and intelligent healthcare.
                    Soft Sci 2024;4:2.  DOI
               73.       Liu Y, Wang C, Xue J, et al. Body temperature enhanced adhesive, antibacterial, and recyclable ionic hydrogel for epidermal
                    electrophysiological monitoring. Adv Healthc Mater 2022;11:e2200653.  DOI  PubMed
               74.       Han M, Yildiz E, Kaleli HN, et al. Tissue-like optoelectronic neural interface enabled by PEDOT:PSS hydrogel for cardiac and
                    neural stimulation. Adv Healthc Mater 2022;11:e2102160.  DOI  PubMed
               75.       Kleber C, Lienkamp K, Rühe J, Asplund M. Electrochemically controlled drug release from a conducting polymer hydrogel
                    (PDMAAp/PEDOT) for local therapy and bioelectronics. Adv Healthc Mater 2019;8:e1801488.  DOI  PubMed
               76.       Kim SD, Park K, Lee S, et al. Injectable and tissue-conformable conductive hydrogel for MRI-compatible brain-interfacing
                    electrodes. Soft Sci 2023;3:18.  DOI
               77.       Hao M, Li L, Wang S, et al. Stretchable, self-healing, transient macromolecular elastomeric gel for wearable electronics. Microsyst
                    Nanoeng 2019;5:9.  DOI  PubMed  PMC
               78.       Yuk H, Zhang T, Lin S, Parada GA, Zhao X. Tough bonding of hydrogels to diverse non-porous surfaces. Nat Mater 2016;15:190-6.
                    DOI  PubMed  PMC
               79.       Park B, Shin JH, Ok J, et al. Cuticular pad-inspired selective frequency damper for nearly dynamic noise-free bioelectronics. Science
                    2022;376:624-9.  DOI  PubMed
               80.       Li X, Sun Y, Wang S, et al. Body temperature-triggered adhesive ionic conductive hydrogels for bioelectrical signal monitoring.
                    Chem Eng J 2024;498:155195.  DOI
               81.       Xue H, Wang D, Jin M, et al. Hydrogel electrodes with conductive and substrate-adhesive layers for noninvasive long-term EEG
                    acquisition. Microsyst Nanoeng 2023;9:79.  DOI  PubMed  PMC
               82.       Shin Y, Lee HS, Hong YJ, et al. Low-impedance tissue-device interface using homogeneously conductive hydrogels chemically
                    bonded to stretchable bioelectronics. Sci Adv 2024;10:eadi7724.  DOI  PubMed  PMC
               83.       Zhang Q, Lu H, Yun G, et al. A laminated gravity-driven liquid metal-doped hydrogel of unparalleled toughness and conductivity.
                    Adv Funct Mater 2024;34:2308113.  DOI
               84.       Hao M, Wang Y, Li L, et al. Tough engineering hydrogels based on swelling-freeze-thaw method for artificial cartilage. ACS Appl
                    Mater Interfaces 2022;14:25093-103.  DOI  PubMed
               85.       Wei W, Hao M, Zhou K, et al. In situ multimodal transparent electrophysiological hydrogel for in vivo miniature two-photon
                    neuroimaging and electrocorticogram analysis. Acta Biomater 2022;152:86-99.  DOI  PubMed
               86.       Zhu T, Jiang C, Wang M, Zhu C, Zhao N, Xu J. Skin-inspired double-hydrophobic-coating encapsulated hydrogels with enhanced
                    water retention capacity. Adv Funct Mater 2021;31:2102433.  DOI
               87.       Wu S, Liu Z, Gong C, et al. Spider-silk-inspired strong and tough hydrogel fibers with anti-freezing and water retention properties.
                    Nat Commun 2024;15:4441.  DOI  PubMed  PMC
               88.       Lan L, Ping J, Li H, et al. Skin-inspired all-natural biogel for bioadhesive interface. Adv Mater 2024;36:e2401151.  DOI  PubMed
               89.       Dou X, Wang H, Yang F, Shen H, Wang X, Wu D. One-step soaking strategy toward anti-swelling hydrogels with a stiff “armor”.
                    Adv Sci 2023;10:e2206242.  DOI  PubMed  PMC
               90.       Li N, Yu Q, Duan S, et al. Anti-swelling, high-strength, anisotropic conductive hydrogel with excellent biocompatibility for
                    implantable electronic tendon. Adv Funct Mater 2024;34:2309500.  DOI
               91.       Zhang Z, Yao A, Raffa P. Transparent, highly stretchable, self-healing, adhesive, freezing-tolerant, and swelling-resistant
                    multifunctional hydrogels for underwater motion detection and information transmission. Adv Funct Mater 2024:2407529.  DOI
               92.       Wei H, Wang Z, Zhang H, et al. Ultrastretchable, highly transparent, self-adhesive, and 3D-printable ionic hydrogels for multimode
                    tactical sensing. Chem Mater 2021;33:6731-42. DOI
               93.       Zeng T, Wu Y, Lei M. Review: developments and challenges of advanced flexible electronic materials for medical monitoring
                    applications. Adv Compos Hybrid Mater 2024;7:949.  DOI
               94.       Liu J, Lin S, Li W, et al. Ten-hour stable noninvasive brain-computer interface realized by semidry hydrogel-based electrodes.
                    Research 2022;2022:9830457.  DOI  PubMed  PMC
               95.       Li G, Liu Y, Chen Y, et al. Robust, self-adhesive, and low-contact impedance polyvinyl alcohol/polyacrylamide dual-network
                    hydrogel semidry electrode for biopotential signal acquisition. SmartMat 2024;5:e1173.  DOI
               96.       Wang F, Ma M, Fu R, Zhang X. EEG-based detection of driving fatigue using a novel electrode. Sensor Actuat A Phys
                    2024;365:114895.  DOI
               97.       Luo J, Sun C, Chang B, et al. MXene-enabled self-adaptive hydrogel interface for active electroencephalogram interactions. ACS
                    Nano 2022;16:19373-84.  DOI
               98.       Wang X, Sun X, Gan D, et al. Bioadhesive and conductive hydrogel-integrated brain-machine interfaces for conformal and immune-
                    evasive contact with brain tissue. Matter 2022;5:1204-23.  DOI
               99.       Adewole DO, Struzyna LA, Burrell JC, et al. Development of optically controlled “living electrodes” with long-projecting axon tracts
                    for a synaptic brain-machine interface. Sci Adv 2021;7:eaay5347.  DOI  PubMed  PMC
               100.      Park S, Yuk H, Zhao R, et al. Adaptive and multifunctional hydrogel hybrid probes for long-term sensing and modulation of neural
                    activity. Nat Commun 2021;12:3435.  DOI  PubMed  PMC
   51   52   53   54   55   56   57   58   59   60   61