Page 54 - Read Online
P. 54

Zhang et al. Soft Sci 2024;4:39  https://dx.doi.org/10.20517/ss.2024.34         Page 25 of 28

                    electrophysiological measurements. Sensor Actuat B Chem 2016;237:49-53.  DOI
               10.       Fernandes MS, Dias NS, Silva AF, et al. Hydrogel-based photonic sensor for a biopotential wearable recording system. Biosens
                    Bioelectron 2010;26:80-6.  DOI  PubMed
               11.       Aggas JR, Abasi S, Phipps JF, Podstawczyk DA, Guiseppi-Elie A. Microfabricated and 3-D printed electroconductive hydrogels of
                    PEDOT:PSS and their application in bioelectronics. Biosens Bioelectron 2020;168:112568.  DOI  PubMed
               12.       Li  T,  Liang  B,  Ye  Z,  et  al.  An  integrated  and  conductive  hydrogel-paper  patch  for  simultaneous  sensing  of  chemical-
                    electrophysiological signals. Biosens Bioelectron 2022;198:113855.  DOI  PubMed
               13.       Kim J, Won D, Kim TH, Kim CY, Ko SH. Rapid prototyping and facile customization of conductive hydrogel bioelectronics based
                    on all laser process. Biosens Bioelectron 2024;258:116327.  DOI  PubMed
               14.       Zhang Q, Zhao G, Li Z, et al. Multi-functional adhesive hydrogel as bio-interface for wireless transient pacemaker. Biosens
                    Bioelectron 2024;263:116597.  DOI  PubMed
               15.       Pan X, Wang Q, He P, et al. A bionic tactile plastic hydrogel-based electronic skin constructed by a nerve-like nanonetwork
                    combining stretchable, compliant, and self-healing properties. Chem Eng J 2020;379:122271.  DOI
               16.       Hu X, Zhang P, Liu J, et al. A self-association cross-linked conductive zwitterionic hydrogel as a myocardial patch for restoring
                    cardiac function. Chem Eng J 2022;446:136988.  DOI
               17.       Zhong S, Lu C, Liu H, et al. Electrical and immune stimulation-based hydrogels synergistically realize scarless wound healing via
                    amplifying  endogenous  electrophysiological  function  and  promoting  macrophage  phenotype-switching.  Chem  Eng  J
                    2024;491:152048.  DOI
               18.       Suarez SL, Rane AA, Muñoz A, et al. Intramyocardial injection of hydrogel with high interstitial spread does not impact action
                    potential propagation. Acta Biomater 2015;26:13-22.  DOI  PubMed  PMC
               19.       Zhou X, Rajeev A, Subramanian A, et al. Self-healing, stretchable, and highly adhesive hydrogels for epidermal patch electrodes.
                    Acta Biomater 2022;139:296-306.  DOI  PubMed
               20.       Lee H, Lee S, Lee W, Yokota T, Fukuda K, Someya T. Ultrathin organic electrochemical transistor with nonvolatile and thin gel
                    electrolyte for long-term electrophysiological monitoring. Adv Funct Mater 2019;29:1906982.  DOI
               21.       Zhang Z, Yang J, Wang H, et al. A 10-micrometer-thick nanomesh-reinforced gas-permeable hydrogel skin sensor for long-term
                    electrophysiological monitoring. Sci Adv 2024;10:eadj5389.  DOI  PubMed  PMC
               22.       Walker BW, Lara RP, Mogadam E, Yu CH, Kimball W, Annabi N. Rational design of microfabricated electroconductive hydrogels
                    for biomedical applications. Prog Polym Sci 2019;92:135-57.  DOI  PubMed  PMC
               23.       Xue  Y,  Zhang  J,  Chen  X,  et  al.  Trigger-detachable  hydrogel  adhesives  for  bioelectronic  interfaces.  Adv  Funct  Mater
                    2021;31:2106446.  DOI
               24.       Yan L, Zhou T, Han L, et al. Conductive cellulose bio-nanosheets assembled biostable hydrogel for reliable bioelectronics. Adv Funct
                    Mater 2021;31:2010465.  DOI
               25.       Lei W, Peng C, Chiu S, et al. All biodisintegratable hydrogel biohybrid neural interfaces with synergistic performances of
                    microelectrode array technologies, tissue scaffolding, and cell therapy. Adv Funct Mater 2024;34:2307365.  DOI
               26.       Liu R, Wang T, Li G, et al. Self-reinforced hydrogel-based skin-contactable flexible electronics for multimodal electrophysiological
                    signal monitoring and emergency alarming system. Adv Funct Mater 2023;33:2214917.  DOI
               27.       Yu C, Yue Z, Zhang H, et al. Ultra-histocompatible and electrophysiological-adapted PEDOT-based hydrogels designed for cardiac
                    repair. Adv Funct Mater 2023;33:2211023.  DOI
               28.       Hu M, Ren J, Pan Y, et al. Scaled elastic hydrogel interfaces for brain electrophysiology. Adv Funct Mater 2024;34:2407926.  DOI
               29.       Yang J, Bai R, Chen B, Suo Z. Hydrogel adhesion: a supramolecular synergy of chemistry, topology, and mechanics. Adv Funct
                    Mater 2020;30:1901693.  DOI
               30.       Wang J, Wang T, Liu H, et al. Flexible electrodes for brain-computer interface system. Adv Mater 2023;35:e2211012.  DOI  PubMed
               31.       Zulkifli NA, Jeong W, Kim M, et al. 3D-printed magnetic-based air pressure sensor for continuous respiration monitoring and
                    breathing rehabilitation. Soft Sci 2024;4:20.  DOI
                                                                             3+
               32.       Chen Y, Chang Z, Liu Y, et al. Tongue-inspired gelatin/poly(acrylate-co-acrylamide)-Fe  organic hydrogel with tunable mechanical,
                    electrical, and sensory properties. Eur Polym J 2024;210:112992.  DOI
               33.       Xu K, Li S, Dong S, et al. Bioresorbable electrode array for electrophysiological and pressure signal recording in the brain. Adv
                    Healthc Mater 2019;8:e1801649.  DOI
               34.       Han Q, Zhang C, Guo T, et al. Hydrogel nanoarchitectonics of a flexible and self-adhesive electrode for long-term wireless
                    electroencephalogram recording and high-accuracy sustained attention evaluation. Adv Mater 2023;35:e2209606.  DOI  PubMed
               35.       Wang C, Wang H, Wang B, et al. On-skin paintable biogel for long-term high-fidelity electroencephalogram recording. Sci Adv
                    2022;8:eabo1396.  DOI  PubMed  PMC
               36.       Singh S, Gupta BD. Fabrication and characterization of a highly sensitive surface plasmon resonance based fiber optic pH sensor
                    utilizing high index layer and smart hydrogel. Sensor Actuat B Chem 2012;173:268-73.  DOI
               37.       Xu M, Liu Y, Yang K, et al. Minimally invasive power sources for implantable electronics. Exploration 2024;4:20220106.  DOI
                    PubMed  PMC
               38.       Ma B, Huang K, Chen G, et al. A dual-mode wearable sensor with coupled ion and pressure sensing. Soft Sci 2024;4:8.  DOI
               39.       Yang M, Chen P, Qu X, et al. Robust neural interfaces with photopatternable, bioadhesive, and highly conductive hydrogels for stable
                    chronic neuromodulation. ACS Nano ;2023:885-95.  DOI  PubMed
   49   50   51   52   53   54   55   56   57   58   59