Page 54 - Read Online
P. 54
Zhang et al. Soft Sci 2024;4:39 https://dx.doi.org/10.20517/ss.2024.34 Page 25 of 28
electrophysiological measurements. Sensor Actuat B Chem 2016;237:49-53. DOI
10. Fernandes MS, Dias NS, Silva AF, et al. Hydrogel-based photonic sensor for a biopotential wearable recording system. Biosens
Bioelectron 2010;26:80-6. DOI PubMed
11. Aggas JR, Abasi S, Phipps JF, Podstawczyk DA, Guiseppi-Elie A. Microfabricated and 3-D printed electroconductive hydrogels of
PEDOT:PSS and their application in bioelectronics. Biosens Bioelectron 2020;168:112568. DOI PubMed
12. Li T, Liang B, Ye Z, et al. An integrated and conductive hydrogel-paper patch for simultaneous sensing of chemical-
electrophysiological signals. Biosens Bioelectron 2022;198:113855. DOI PubMed
13. Kim J, Won D, Kim TH, Kim CY, Ko SH. Rapid prototyping and facile customization of conductive hydrogel bioelectronics based
on all laser process. Biosens Bioelectron 2024;258:116327. DOI PubMed
14. Zhang Q, Zhao G, Li Z, et al. Multi-functional adhesive hydrogel as bio-interface for wireless transient pacemaker. Biosens
Bioelectron 2024;263:116597. DOI PubMed
15. Pan X, Wang Q, He P, et al. A bionic tactile plastic hydrogel-based electronic skin constructed by a nerve-like nanonetwork
combining stretchable, compliant, and self-healing properties. Chem Eng J 2020;379:122271. DOI
16. Hu X, Zhang P, Liu J, et al. A self-association cross-linked conductive zwitterionic hydrogel as a myocardial patch for restoring
cardiac function. Chem Eng J 2022;446:136988. DOI
17. Zhong S, Lu C, Liu H, et al. Electrical and immune stimulation-based hydrogels synergistically realize scarless wound healing via
amplifying endogenous electrophysiological function and promoting macrophage phenotype-switching. Chem Eng J
2024;491:152048. DOI
18. Suarez SL, Rane AA, Muñoz A, et al. Intramyocardial injection of hydrogel with high interstitial spread does not impact action
potential propagation. Acta Biomater 2015;26:13-22. DOI PubMed PMC
19. Zhou X, Rajeev A, Subramanian A, et al. Self-healing, stretchable, and highly adhesive hydrogels for epidermal patch electrodes.
Acta Biomater 2022;139:296-306. DOI PubMed
20. Lee H, Lee S, Lee W, Yokota T, Fukuda K, Someya T. Ultrathin organic electrochemical transistor with nonvolatile and thin gel
electrolyte for long-term electrophysiological monitoring. Adv Funct Mater 2019;29:1906982. DOI
21. Zhang Z, Yang J, Wang H, et al. A 10-micrometer-thick nanomesh-reinforced gas-permeable hydrogel skin sensor for long-term
electrophysiological monitoring. Sci Adv 2024;10:eadj5389. DOI PubMed PMC
22. Walker BW, Lara RP, Mogadam E, Yu CH, Kimball W, Annabi N. Rational design of microfabricated electroconductive hydrogels
for biomedical applications. Prog Polym Sci 2019;92:135-57. DOI PubMed PMC
23. Xue Y, Zhang J, Chen X, et al. Trigger-detachable hydrogel adhesives for bioelectronic interfaces. Adv Funct Mater
2021;31:2106446. DOI
24. Yan L, Zhou T, Han L, et al. Conductive cellulose bio-nanosheets assembled biostable hydrogel for reliable bioelectronics. Adv Funct
Mater 2021;31:2010465. DOI
25. Lei W, Peng C, Chiu S, et al. All biodisintegratable hydrogel biohybrid neural interfaces with synergistic performances of
microelectrode array technologies, tissue scaffolding, and cell therapy. Adv Funct Mater 2024;34:2307365. DOI
26. Liu R, Wang T, Li G, et al. Self-reinforced hydrogel-based skin-contactable flexible electronics for multimodal electrophysiological
signal monitoring and emergency alarming system. Adv Funct Mater 2023;33:2214917. DOI
27. Yu C, Yue Z, Zhang H, et al. Ultra-histocompatible and electrophysiological-adapted PEDOT-based hydrogels designed for cardiac
repair. Adv Funct Mater 2023;33:2211023. DOI
28. Hu M, Ren J, Pan Y, et al. Scaled elastic hydrogel interfaces for brain electrophysiology. Adv Funct Mater 2024;34:2407926. DOI
29. Yang J, Bai R, Chen B, Suo Z. Hydrogel adhesion: a supramolecular synergy of chemistry, topology, and mechanics. Adv Funct
Mater 2020;30:1901693. DOI
30. Wang J, Wang T, Liu H, et al. Flexible electrodes for brain-computer interface system. Adv Mater 2023;35:e2211012. DOI PubMed
31. Zulkifli NA, Jeong W, Kim M, et al. 3D-printed magnetic-based air pressure sensor for continuous respiration monitoring and
breathing rehabilitation. Soft Sci 2024;4:20. DOI
3+
32. Chen Y, Chang Z, Liu Y, et al. Tongue-inspired gelatin/poly(acrylate-co-acrylamide)-Fe organic hydrogel with tunable mechanical,
electrical, and sensory properties. Eur Polym J 2024;210:112992. DOI
33. Xu K, Li S, Dong S, et al. Bioresorbable electrode array for electrophysiological and pressure signal recording in the brain. Adv
Healthc Mater 2019;8:e1801649. DOI
34. Han Q, Zhang C, Guo T, et al. Hydrogel nanoarchitectonics of a flexible and self-adhesive electrode for long-term wireless
electroencephalogram recording and high-accuracy sustained attention evaluation. Adv Mater 2023;35:e2209606. DOI PubMed
35. Wang C, Wang H, Wang B, et al. On-skin paintable biogel for long-term high-fidelity electroencephalogram recording. Sci Adv
2022;8:eabo1396. DOI PubMed PMC
36. Singh S, Gupta BD. Fabrication and characterization of a highly sensitive surface plasmon resonance based fiber optic pH sensor
utilizing high index layer and smart hydrogel. Sensor Actuat B Chem 2012;173:268-73. DOI
37. Xu M, Liu Y, Yang K, et al. Minimally invasive power sources for implantable electronics. Exploration 2024;4:20220106. DOI
PubMed PMC
38. Ma B, Huang K, Chen G, et al. A dual-mode wearable sensor with coupled ion and pressure sensing. Soft Sci 2024;4:8. DOI
39. Yang M, Chen P, Qu X, et al. Robust neural interfaces with photopatternable, bioadhesive, and highly conductive hydrogels for stable
chronic neuromodulation. ACS Nano ;2023:885-95. DOI PubMed

