Page 55 - Read Online
P. 55
Page 26 of 28 Zhang et al. Soft Sci 2024;4:39 https://dx.doi.org/10.20517/ss.2024.34
40. Dutta T, Chaturvedi P, Llamas-Garro I, Velázquez-González JS, Dubey R, Mishra SK. Smart materials for flexible electronics and
devices: hydrogel. RSC Adv 2024;14:12984-3004. DOI PubMed PMC
41. Park J, Lee S, Lee M, Kim HS, Lee JY. Injectable conductive hydrogels with tunable degradability as novel implantable
bioelectrodes. Small 2023;19:e2300250. DOI PubMed
42. Zhu J, Zhou C, Zhang M. Recent progress in flexible tactile sensor systems: from design to application. Soft Sci 2021;1:3. DOI
43. Zhuo S, Tessier A, Arefi M, Zhang A, Williams C, Ameri SK. Reusable free-standing hydrogel electronic tattoo sensors with superior
performance. npj Flex Electron 2024;8:335. DOI
44. Liu W, Xie R, Zhu J, et al. A temperature responsive adhesive hydrogel for fabrication of flexible electronic sensors. npj Flex
Electron 2022;6:193. DOI
45. Ersaro NT, Yalcin C, Muller R. The future of brain–machine interfaces is optical. Nat Electron 2023;6:96-8. DOI
46. Zhang T, Hernandez O, Chrapkiewicz R, et al. Kilohertz two-photon brain imaging in awake mice. Nat Methods 2019;16:1119-22.
DOI PubMed PMC
47. Guan H, Li D, Park HC, et al. Deep-learning two-photon fiberscopy for video-rate brain imaging in freely-behaving mice. Nat
Commun 2022;13:1534. DOI PubMed PMC
48. Ke X, Mu X, Chen S, et al. Reduced graphene oxide reinforced PDA-Gly-PVA composite hydrogel as strain sensors for monitoring
human motion. Soft Sci 2023;3:1-12. DOI
49. Silva AC, Paterson TE, Minev IR. Electro-assisted assembly of conductive polymer and soft hydrogel into core-shell hybrids. Soft Sci
2023;3:3. DOI
50. Liu J, Tian G, Yang W, Deng W. Recent progress in flexible piezoelectric devices toward human-machine interactions. Soft Sci
2022;2:22. DOI
51. Sun G, Wang P, Jiang Y, Sun H, Meng C, Guo S. Recent advances in flexible and soft gel-based pressure sensors. Soft Sci 2022;2:17.
DOI
52. Trautmann EM, O'Shea DJ, Sun X, et al. Dendritic calcium signals in rhesus macaque motor cortex drive an optical brain-computer
interface. Nat Commun 2021;12:3689. DOI PubMed PMC
53. Lee AT, Chang EF, Paredes MF, Nowakowski TJ. Large-scale neurophysiology and single-cell profiling in human neuroscience.
Nature 2024;630:587-95. DOI PubMed
54. Li Y, Gu Y, Qian S, et al. An injectable, self-healable, and reusable PEDOT:PSS/PVA hydrogel patch electrode for epidermal
electronics. Nano Res 2024;17:5479-90. DOI
55. Zhang Y, Hu Y, Xie B, Yang G, Yin Z, Wu H. Hoffmeister effect optimized hydrogel electrodes with enhanced electrical and
mechanical properties for nerve conduction studies. Research 2024;7:0453. DOI PubMed PMC
56. Li X, He L, Li Y, et al. Healable, degradable, and conductive MXene nanocomposite hydrogel for multifunctional epidermal sensors.
ACS Nano 2021;15:7765-73. DOI PubMed
57. Gong HY, Park J, Kim W, Kim J, Lee JY, Koh WG. A novel conductive and micropatterned PEG-based hydrogel enabling the
topographical and electrical stimulation of myoblasts. ACS Appl Mater Interfaces 2019;11:47695-706. DOI PubMed
58. Dong M, Shi B, Liu D, et al. Conductive hydrogel for a photothermal-responsive stretchable artificial nerve and coalescing with a
damaged peripheral nerve. ACS Nano 2020;14:16565-75. DOI PubMed
59. Feiner R, Dvir T. Tissue–electronics interfaces: from implantable devices to engineered tissues. Nat Rev Mater
2018;3:BFnatrevmats201776. DOI
60. Chen R, Canales A, Anikeeva P. Neural recording and modulation technologies. Nat Rev Mater 2017;2:16093. DOI PubMed PMC
61. Pei F, Tian B. Nanoelectronics for minimally invasive cellular recordings. Adv Funct Mater 2020;30:1906210. DOI
62. Su H, Mao L, Chen X, et al. A complementary dual-mode ion-electron conductive hydrogel enables sustained conductivity for
prolonged electroencephalogram recording. Adv Sci 2024;11:e2405273. DOI PubMed PMC
63. Xue Y, Chen X, Wang F, Lin J, Liu J. Mechanically-compliant bioelectronic interfaces through fatigue-resistant conducting polymer
hydrogel coating. Adv Mater 2023;35:e2304095. DOI PubMed
64. Liang Q, Shen Z, Sun X, et al. Electron conductive and transparent hydrogels for recording brain neural signals and neuromodulation.
Adv Mater 2023;35:e2211159. DOI PubMed
65. Luo Y, Li J, Ding Q, Wang H, Liu C, Wu J. Functionalized hydrogel-based wearable gas and humidity sensors. Nanomicro Lett
2023;15:136. DOI PubMed PMC
66. Abidian MR, Martin DC. Multifunctional nanobiomaterials for neural interfaces. Adv Funct Mater 2009;19:573-85. DOI
67. Zou S, Li Y, Gong Z. Shape-deformable micro-LEDs for advanced displays and healthcare. Soft Sci 2024;4:19. DOI
68. Cheng T, Zhang YZ, Wang S, et al. Conductive hydrogel-based electrodes and electrolytes for stretchable and self-healable
supercapacitors. Adv Funct Mater 2021;31:2101303. DOI
69. Fan X, Chen Z, Sun H, Zeng S, Liu R, Tian Y. Polyelectrolyte-based conductive hydrogels: from theory to applications. Soft Sci
2022;2:10. DOI
70. Li Y, Wang P, Meng C, Chen W, Zhang L, Guo S. A brief review of miniature flexible and soft tactile sensors for interventional
catheter applications. Soft Sci 2022;2:6. DOI
71. Shen S, Zhang J, Han Y, et al. A core-shell nanoreinforced ion-conductive implantable hydrogel bioelectronic patch with high
sensitivity and bioactivity for real-time synchronous heart monitoring and repairing. Adv Healthc Mater 2023;12:e2301990. DOI
PubMed

