Page 55 - Read Online
P. 55

Page 26 of 28                          Zhang et al. Soft Sci 2024;4:39  https://dx.doi.org/10.20517/ss.2024.34

               40.       Dutta T, Chaturvedi P, Llamas-Garro I, Velázquez-González JS, Dubey R, Mishra SK. Smart materials for flexible electronics and
                    devices: hydrogel. RSC Adv 2024;14:12984-3004.  DOI  PubMed  PMC
               41.       Park J, Lee S, Lee M, Kim HS, Lee JY. Injectable conductive hydrogels with tunable degradability as novel implantable
                    bioelectrodes. Small 2023;19:e2300250.  DOI  PubMed
               42.       Zhu J, Zhou C, Zhang M. Recent progress in flexible tactile sensor systems: from design to application. Soft Sci 2021;1:3.  DOI
               43.       Zhuo S, Tessier A, Arefi M, Zhang A, Williams C, Ameri SK. Reusable free-standing hydrogel electronic tattoo sensors with superior
                    performance. npj Flex Electron 2024;8:335.  DOI
               44.       Liu W, Xie R, Zhu J, et al. A temperature responsive adhesive hydrogel for fabrication of flexible electronic sensors. npj Flex
                    Electron 2022;6:193.  DOI
               45.       Ersaro NT, Yalcin C, Muller R. The future of brain–machine interfaces is optical. Nat Electron 2023;6:96-8.  DOI
               46.       Zhang T, Hernandez O, Chrapkiewicz R, et al. Kilohertz two-photon brain imaging in awake mice. Nat Methods 2019;16:1119-22.
                    DOI  PubMed  PMC
               47.       Guan H, Li D, Park HC, et al. Deep-learning two-photon fiberscopy for video-rate brain imaging in freely-behaving mice. Nat
                    Commun 2022;13:1534.  DOI  PubMed  PMC
               48.       Ke X, Mu X, Chen S, et al. Reduced graphene oxide reinforced PDA-Gly-PVA composite hydrogel as strain sensors for monitoring
                    human motion. Soft Sci 2023;3:1-12.  DOI
               49.       Silva AC, Paterson TE, Minev IR. Electro-assisted assembly of conductive polymer and soft hydrogel into core-shell hybrids. Soft Sci
                    2023;3:3.  DOI
               50.       Liu J, Tian G, Yang W, Deng W. Recent progress in flexible piezoelectric devices toward human-machine interactions. Soft Sci
                    2022;2:22.  DOI
               51.       Sun G, Wang P, Jiang Y, Sun H, Meng C, Guo S. Recent advances in flexible and soft gel-based pressure sensors. Soft Sci 2022;2:17.
                    DOI
               52.       Trautmann EM, O'Shea DJ, Sun X, et al. Dendritic calcium signals in rhesus macaque motor cortex drive an optical brain-computer
                    interface. Nat Commun 2021;12:3689.  DOI  PubMed  PMC
               53.       Lee AT, Chang EF, Paredes MF, Nowakowski TJ. Large-scale neurophysiology and single-cell profiling in human neuroscience.
                    Nature 2024;630:587-95.  DOI  PubMed
               54.       Li Y, Gu Y, Qian S, et al. An injectable, self-healable, and reusable PEDOT:PSS/PVA hydrogel patch electrode for epidermal
                    electronics. Nano Res 2024;17:5479-90.  DOI
               55.       Zhang Y, Hu Y, Xie B, Yang G, Yin Z, Wu H. Hoffmeister effect optimized hydrogel electrodes with enhanced electrical and
                    mechanical properties for nerve conduction studies. Research 2024;7:0453.  DOI  PubMed  PMC
               56.       Li X, He L, Li Y, et al. Healable, degradable, and conductive MXene nanocomposite hydrogel for multifunctional epidermal sensors.
                    ACS Nano 2021;15:7765-73.  DOI  PubMed
               57.       Gong HY, Park J, Kim W, Kim J, Lee JY, Koh WG. A novel conductive and micropatterned PEG-based hydrogel enabling the
                    topographical and electrical stimulation of myoblasts. ACS Appl Mater Interfaces 2019;11:47695-706.  DOI  PubMed
               58.       Dong M, Shi B, Liu D, et al. Conductive hydrogel for a photothermal-responsive stretchable artificial nerve and coalescing with a
                    damaged peripheral nerve. ACS Nano 2020;14:16565-75.  DOI  PubMed
               59.       Feiner  R,  Dvir  T.  Tissue–electronics  interfaces:  from  implantable  devices  to  engineered  tissues.  Nat  Rev  Mater
                    2018;3:BFnatrevmats201776.  DOI
               60.       Chen R, Canales A, Anikeeva P. Neural recording and modulation technologies. Nat Rev Mater 2017;2:16093.  DOI  PubMed  PMC
               61.       Pei F, Tian B. Nanoelectronics for minimally invasive cellular recordings. Adv Funct Mater 2020;30:1906210.  DOI
               62.       Su H, Mao L, Chen X, et al. A complementary dual-mode ion-electron conductive hydrogel enables sustained conductivity for
                    prolonged electroencephalogram recording. Adv Sci 2024;11:e2405273.  DOI  PubMed  PMC
               63.       Xue Y, Chen X, Wang F, Lin J, Liu J. Mechanically-compliant bioelectronic interfaces through fatigue-resistant conducting polymer
                    hydrogel coating. Adv Mater 2023;35:e2304095.  DOI  PubMed
               64.       Liang Q, Shen Z, Sun X, et al. Electron conductive and transparent hydrogels for recording brain neural signals and neuromodulation.
                    Adv Mater 2023;35:e2211159.  DOI  PubMed
               65.       Luo Y, Li J, Ding Q, Wang H, Liu C, Wu J. Functionalized hydrogel-based wearable gas and humidity sensors. Nanomicro Lett
                    2023;15:136.  DOI  PubMed  PMC
               66.       Abidian MR, Martin DC. Multifunctional nanobiomaterials for neural interfaces. Adv Funct Mater 2009;19:573-85.  DOI
               67.       Zou S, Li Y, Gong Z. Shape-deformable micro-LEDs for advanced displays and healthcare. Soft Sci 2024;4:19.  DOI
               68.       Cheng T, Zhang YZ, Wang S, et al. Conductive hydrogel-based electrodes and electrolytes for stretchable and self-healable
                    supercapacitors. Adv Funct Mater 2021;31:2101303.  DOI
               69.       Fan X, Chen Z, Sun H, Zeng S, Liu R, Tian Y. Polyelectrolyte-based conductive hydrogels: from theory to applications. Soft Sci
                    2022;2:10.  DOI
               70.       Li Y, Wang P, Meng C, Chen W, Zhang L, Guo S. A brief review of miniature flexible and soft tactile sensors for interventional
                    catheter applications. Soft Sci 2022;2:6.  DOI
               71.       Shen S, Zhang J, Han Y, et al. A core-shell nanoreinforced ion-conductive implantable hydrogel bioelectronic patch with high
                    sensitivity and bioactivity for real-time synchronous heart monitoring and repairing. Adv Healthc Mater 2023;12:e2301990.  DOI
                    PubMed
   50   51   52   53   54   55   56   57   58   59   60