Page 111 - Read Online
P. 111
Page 18 of 19 Huang et al. Soft Sci. 2025, 5, 24 https://dx.doi.org/10.20517/ss.2025.07
16. Ji, D.; Park, J. M.; Oh, M. S.; et al. Superstrong, superstiff, and conductive alginate hydrogels. Nat. Commun. 2022, 13, 3019. DOI
PubMed PMC
17. Nie, Y.; Yue, D.; Xiao, W.; et al. Anti-freezing and self-healing nanocomposite hydrogels based on poly(vinyl alcohol) for highly
sensitive and durable flexible sensors. Chem. Eng. J. 2022, 436, 135243. DOI
18. Zhang, Q.; Liu, X.; Zhang, J.; Duan, L.; Gao, G. A highly conductive hydrogel driven by phytic acid towards a wearable sensor with
freezing and dehydration resistance. J. Mater. Chem. A. 2021, 9, 22615-25. DOI
19. Hu, R.; Zhao, J.; Wang, Y.; Li, Z.; Zheng, J. A highly stretchable, self-healing, recyclable and interfacial adhesion gel: preparation,
characterization and applications. Chem. Eng. J. 2019, 360, 334-41. DOI
20. Chen, Z.; Liu, S.; Kang, P.; et al. Decoupled temperature–pressure sensing system for deep learning assisted human–machine
interaction. Adv. Funct. Mater. 2024, 34, 2411688. DOI
21. Yang, C.; Huang, W.; Lin, Y.; et al. Stretchable MXene/carbon nanotube bilayer strain sensors with tunable sensitivity and working
ranges. ACS. Appl. Mater. Interfaces. 2024, 16, 30274-83. DOI
22. Dai, N.; Lei, I. M.; Li, Z.; Li, Y.; Fang, P.; Zhong, J. Recent advances in wearable electromechanical sensors - moving towards
machine learning-assisted wearable sensing systems. Nano. Energy. 2023, 105, 108041. DOI
23. Wang, M.; Li, L.; Zhang, T. Hysteresis-free, fatigue-resistant and self-adhesive conductive hydrogel electronics towards multimodal
wearable application. Nano. Energy. 2024, 126, 109586. DOI
24. Li, Q.; Zhi, X.; Xia, Y.; et al. Ultrastretchable high-conductivity MXene-based organohydrogels for human health monitoring and
machine-learning-assisted recognition. ACS. Appl. Mater. Interfaces. 2023, 15, 19435-46. DOI
25. Pi, M.; Qin, S.; Wen, S.; et al. Rapid gelation of tough and anti-swelling hydrogels under mild conditions for underwater
communication. Adv. Funct. Mater. 2023, 33, 2210188. DOI
26. Huang, Y.; Xiao, L.; Zhou, J.; et al. Strong tough polyampholyte hydrogels via the synergistic effect of ionic and metal–ligand bonds.
Adv. Funct. Mater. 2021, 31, 2103917. DOI
27. Han, Y.; Wang, Z.; Sun, H.; et al. Temperature-tolerant versatile conductive zwitterionic nanocomposite organohydrogel toward
multisensory applications. ACS. Appl. Mater. Interfaces. 2024, 16, 38606-19. DOI
28. Qin, Z.; Sun, X.; Yu, Q.; et al. Carbon nanotubes/hydrophobically associated hydrogels as ultrastretchable, highly sensitive, stable
strain, and pressure sensors. ACS. Appl. Mater. Interfaces. 2020, 12, 4944-53. DOI
29. Zhao, H.; Hao, S.; Fu, Q.; et al. Ultrafast fabrication of lignin-encapsulated silica nanoparticles reinforced conductive hydrogels with
high elasticity and self-adhesion for strain sensors. Chem. Mater. 2022, 34, 5258-72. DOI
30. Fan, X.; Ke, T.; Gu, H. Multifunctional, ultra-tough organohydrogel E-skin reinforced by hierarchical goatskin fibers skeleton for
energy harvesting and self-powered monitoring. Adv. Funct. Mater. 2023, 33, 2304015. DOI
31. Ni, Y.; Zang, X.; Yang, Y.; et al. Environmental stability stretchable organic hydrogel humidity sensor for respiratory monitoring with
ultrahigh sensitivity. Adv. Funct. Mater. 2024, 34, 2402853. DOI
32. Zhang, X.; Cui, C.; Chen, S.; et al. Adhesive ionohydrogels based on ionic liquid/water binary solvents with freezing tolerance for
flexible ionotronic devices. Chem. Mater. 2022, 34, 1065-77. DOI
33. Hao, S.; Meng, L.; Fu, Q.; Xu, F.; Yang, J. Low-temperature tolerance and conformal adhesion zwitterionic hydrogels as electronic
skin for strain and temperature responsiveness. Chem. Eng. J. 2022, 431, 133782. DOI
34. Gu, J.; Huang, J.; Chen, G.; et al. Multifunctional poly(vinyl alcohol) nanocomposite organohydrogel for flexible strain and
temperature sensor. ACS. Appl. Mater. Interfaces. 2020, 12, 40815-27. DOI
35. Zhang, Z.; Tang, L.; Chen, C.; et al. Liquid metal-created macroporous composite hydrogels with self-healing ability and multiple
sensations as artificial flexible sensors. J. Mater. Chem. A. 2021, 9, 875-83. DOI
36. Chen, H.; Huang, J.; Liu, J.; et al. High toughness multifunctional organic hydrogels for flexible strain and temperature sensor. J.
Mater. Chem. A. 2021, 9, 23243-55. DOI
37. Xie, Z.; Li, H.; Mi, H.; Feng, P.; Liu, Y.; Jing, X. Freezing-tolerant, widely detectable and ultra-sensitive composite organohydrogel
for multiple sensing applications. J. Mater. Chem. C. 2021, 9, 10127-37. DOI
38. Zhou, L.; Li, Y.; Xiao, J.; et al. Liquid metal-doped conductive hydrogel for construction of multifunctional sensors. Anal. Chem.
2023, 95, 3811-20. DOI
39. Liu, Z.; Wang, Y.; Ren, Y.; et al. Poly(ionic liquid) hydrogel-based anti-freezing ionic skin for a soft robotic gripper. Mater. Horiz.
2020, 7, 919-27. DOI
40. Chen, L.; Chang, X.; Wang, H.; Chen, J.; Zhu, Y. Stretchable and transparent multimodal electronic-skin sensors in detecting strain,
temperature, and humidity. Nano. Energy. 2022, 96, 107077. DOI
41. Zhang, B.; Zhang, X.; Song, H.; Nguyen, D. H.; Zhang, C.; Liu, T. Strong-weak response network-enabled ionic conductive hydrogels
with high stretchability, self-healability, and self-adhesion for ionic sensors. ACS. Appl. Mater. Interfaces. 2022, 14, 32551-60. DOI
42. Hao, S.; Dai, R.; Fu, Q.; et al. A robust and adhesive hydrogel enables interfacial coupling for continuous temperature monitoring.
Adv. Funct. Mater. 2023, 33, 2302840. DOI
43. Ni, Y.; Zang, X.; Chen, J.; et al. Flexible MXene-based hydrogel enables wearable human–computer interaction for intelligent
underwater communication and sensing rescue. Adv. Funct. Mater. 2023, 33, 2301127. DOI
44. Lei, T.; Wang, Y.; Feng, Y.; et al. PNIPAAm-based temperature responsive ionic conductive hydrogels for flexible strain and
temperature sensing. J. Colloid. Interface. Sci. 2025, 678, 726-41. DOI
45. Qu, X.; Sun, H.; Kan, X.; et al. Temperature-sensitive and solvent-resistance hydrogel sensor for ambulatory signal acquisition in

