Page 88 - Read Online
P. 88
Page 12 of 13 Zhao et al. Soft Sci. 2025, 5, 10 https://dx.doi.org/10.20517/ss.2024.61
5. Amjadi, M.; Kyung, K.; Park, I.; Sitti, M. Stretchable, skin mountable, and wearable strain sensors and their potential applications: a
review. Adv. Funct. Mater. 2016, 26, 1678-98. DOI
6. Obitayo, W.; Liu, T. A review: carbon nanotube-based piezoresistive strain sensors. J. Sens. 2012, 2012, 1-15. DOI
7. Zhou, Z.; Chen, N.; Zhong, H.; et al. Textile-based mechanical sensors: a review. Materials 2021, 14, 6073. DOI PubMed PMC
8. Lv, G.; Wang, H.; Tong, Y.; et al. Flexible, conformable organic semiconductor proximity sensor array for electronic skin. Adv. Mater.
Interfaces. 2020, 7, 2000306. DOI
9. Wei, P.; Yang, X.; Cao, Z.; et al. Flexible and stretchable electronic skin with high durability and shock resistance via embedded 3D
printing technology for human activity monitoring and personal healthcare. Adv. Mater. Technol. 2019, 4, 1900315. DOI
10. Zhu, P.; Li, Z.; Pang, J.; He, P.; Zhang, S. Latest developments and trends in electronic skin devices. Soft. Sci. 2024, 4, 17. DOI
11. Miao, Y.; Xu, M.; Yu, J.; Zhang, L. Conductive cold-resistant and elastic hydrogel: a potential bionic skin for human-machine
interaction control over artificial limbs. Sens. Actuators. B. Chem. 2021, 327, 128916. DOI
12. Wang, M.; Yan, Z.; Wang, T.; et al. Gesture recognition using a bioinspired learning architecture that integrates visual data with
somatosensory data from stretchable sensors. Nat. Electron. 2020, 3, 563-70. DOI
13. Hu, M.; He, P.; Zhao, W.; et al. Machine learning-enabled intelligent gesture recognition and communication system using printed
strain sensors. ACS. Appl. Mater. Interfaces. 2023, Online ahead of print,. DOI PubMed
14. Huang, J.; Guo, Y.; Jiang, Y.; Wang, F.; Pan, L.; Shi, Y. Recent advances and future prospects in tactile sensors for normal and shear
force detection, decoupling, and applications. J. Semicond. 2024, 45, 121601. DOI
15. Clevenger, M.; Kim, H.; Song, H. W.; No, K.; Lee, S. Binder-free printed PEDOT wearable sensors on everyday fabrics using
oxidative chemical vapor deposition. Sci. Adv. 2021, 7, eabj8958. DOI PubMed PMC
16. He, J.; Xiao, P.; Lu, W.; et al. A universal high accuracy wearable pulse monitoring system via high sensitivity and large linearity
graphene pressure sensor. Nano. Energy. 2019, 59, 422-33. DOI
17. Yang, H.; Xiao, X.; Li, Z.; et al. Wireless Ti C T MXene strain sensor with ultrahigh sensitivity and designated working windows for
3 2 x
soft exoskeletons. ACS. Nano. 2020, 14, 11860-75. DOI
18. Xu, X.; Li, Z.; Hu, M.; et al. High sensitivity and antifreeze silver nanowire/eutectic gel strain sensor for human motion and healthcare
monitoring. IEEE. Sensors. J. 2024, 24, 5928-35. DOI
19. Jung, H. H.; Lee, H.; Yea, J.; Jang, K. Wearable electrochemical sensors for real-time monitoring in diabetes mellitus and associated
complications. Soft. Sci. 2024, 4, 15. DOI
20. Choi, S.; Han, S. I.; Kim, D.; Hyeon, T.; Kim, D. H. High-performance stretchable conductive nanocomposites: materials, processes,
and device applications. Chem. Soc. Rev. 2019, 48, 1566-95. DOI PubMed
21. Guo, D.; Pan, X.; He, H. Effects of temperature on MWCNTs/PDMS composites based flexible strain sensors. J. Cent. South. Univ.
2020, 27, 3202-12. DOI
22. Huang, X.; Qi, X.; Boey, F.; Zhang, H. Graphene-based composites. Chem. Soc. Rev. 2012, 41, 666-86. DOI PubMed
23. Zheng, Q.; Lee, J.; Shen, X.; Chen, X.; Kim, J. Graphene-based wearable piezoresistive physical sensors. Mater. Today. 2020, 36, 158-
79. DOI
24. He, P.; Derby, B. Inkjet printing ultra-large graphene oxide flakes. 2D. Mater. 2017, 4, 021021. DOI
25. Wu, L.; Li, Y.; Chen, J.; Zhang, R.; Zhang, Q.; Xiao, Y. Rare earth modified reduced graphene oxide reinforced AgCuTi composite
brazing filler for brazing C/C composites. J. Cent. South. Univ. 2024, 31, 1398-411. DOI
26. Li, X.; Cai, W.; An, J.; et al. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 2009, 324,
1312-4. DOI PubMed
27. Deng, C.; Gao, P.; Lan, L.; et al. Ultrasensitive and highly stretchable multifunctional strain sensors with timbre-recognition ability
based on vertical graphene. Adv. Funct. Mater. 2019, 29, 1907151. DOI
28. Huang, K.; Dong, S.; Yang, J.; et al. Three-dimensional printing of a tunable graphene-based elastomer for strain sensors with
ultrahigh sensitivity. Carbon 2019, 143, 63-72. DOI
29. Wang, R.; Jiang, N.; Su, J.; et al. A Bi-Sheath fiber sensor for giant tensile and torsional displacements. Adv. Funct. Materials. 2017,
27, 1702134. DOI
30. Zeng, X.; Hu, M.; He, P.; et al. Highly conductive carbon-based E-textile for gesture recognition. IEEE. Electron. Device. Lett. 2023,
44, 825-8. DOI
31. Liu, Q.; Ramakrishna, S.; Long, Y. Electrospun flexible sensor. J. Semicond. 2019, 40, 111603. DOI
32. Seyedin, S.; Zhang, P.; Naebe, M.; et al. Textile strain sensors: a review of the fabrication technologies, performance evaluation and
applications. Mater. Horiz. 2019, 6, 219-49. DOI
33. Huang, T.; He, P.; Wang, R.; et al. Porous fibers composed of polymer nanoball decorated graphene for wearable and highly sensitive
strain sensors. Adv. Funct. Mater. 2019, 29, 1903732. DOI
34. Tian, X.; Chan, K.; Hua, T.; Niu, B.; Chen, S. Wearable strain sensors enabled by integrating one-dimensional polydopamine-
enhanced graphene/polyurethane sensing fibers into textile structures. J. Mater. Sci. 2020, 55, 17266-83. DOI
35. Heo, J. S.; Shishavan, H. H.; Soleymanpour, R.; Kim, J.; Kim, I. Textile-based stretchable and flexible glove sensor for monitoring
upper extremity prosthesis functions. IEEE. Sensors. J. 2020, 20, 1754-60. DOI
36. Zhu, H.; Gao, H.; Zhao, H.; et al. Printable elastic silver nanowire-based conductor for washable electronic textiles. Nano. Res. 2020,
13, 2879-84. DOI
37. Luo, C.; Tian, B.; Liu, Q.; Feng, Y.; Wu, W. One-step-printed, highly sensitive, textile-based, tunable performance strain sensors for

