Page 88 - Read Online
P. 88

Page 12 of 13                          Zhao et al. Soft Sci. 2025, 5, 10  https://dx.doi.org/10.20517/ss.2024.61

               5.       Amjadi, M.; Kyung, K.; Park, I.; Sitti, M. Stretchable, skin mountable, and wearable strain sensors and their potential applications: a
                   review. Adv. Funct. Mater. 2016, 26, 1678-98.  DOI
               6.       Obitayo, W.; Liu, T. A review: carbon nanotube-based piezoresistive strain sensors. J. Sens. 2012, 2012, 1-15.  DOI
               7.       Zhou, Z.; Chen, N.; Zhong, H.; et al. Textile-based mechanical sensors: a review. Materials 2021, 14, 6073.  DOI  PubMed  PMC
               8.       Lv, G.; Wang, H.; Tong, Y.; et al. Flexible, conformable organic semiconductor proximity sensor array for electronic skin. Adv. Mater.
                   Interfaces. 2020, 7, 2000306.  DOI
               9.       Wei, P.; Yang, X.; Cao, Z.; et al. Flexible and stretchable electronic skin with high durability and shock resistance via embedded 3D
                   printing technology for human activity monitoring and personal healthcare. Adv. Mater. Technol. 2019, 4, 1900315.  DOI
               10.      Zhu, P.; Li, Z.; Pang, J.; He, P.; Zhang, S. Latest developments and trends in electronic skin devices. Soft. Sci. 2024, 4, 17.  DOI
               11.      Miao, Y.; Xu, M.; Yu, J.; Zhang, L. Conductive cold-resistant and elastic hydrogel: a potential bionic skin for human-machine
                   interaction control over artificial limbs. Sens. Actuators. B. Chem. 2021, 327, 128916.  DOI
               12.      Wang, M.; Yan, Z.; Wang, T.; et al. Gesture recognition using a bioinspired learning architecture that integrates visual data with
                   somatosensory data from stretchable sensors. Nat. Electron. 2020, 3, 563-70.  DOI
               13.      Hu, M.; He, P.; Zhao, W.; et al. Machine learning-enabled intelligent gesture recognition and communication system using printed
                   strain sensors. ACS. Appl. Mater. Interfaces. 2023, Online ahead of print,.  DOI  PubMed
               14.      Huang, J.; Guo, Y.; Jiang, Y.; Wang, F.; Pan, L.; Shi, Y. Recent advances and future prospects in tactile sensors for normal and shear
                   force detection, decoupling, and applications. J. Semicond. 2024, 45, 121601.  DOI
               15.      Clevenger, M.; Kim, H.; Song, H. W.; No, K.; Lee, S. Binder-free printed PEDOT wearable sensors on everyday fabrics using
                   oxidative chemical vapor deposition. Sci. Adv. 2021, 7, eabj8958.  DOI  PubMed  PMC
               16.      He, J.; Xiao, P.; Lu, W.; et al. A universal high accuracy wearable pulse monitoring system via high sensitivity and large linearity
                   graphene pressure sensor. Nano. Energy. 2019, 59, 422-33.  DOI
               17.      Yang, H.; Xiao, X.; Li, Z.; et al. Wireless Ti C T  MXene strain sensor with ultrahigh sensitivity and designated working windows for
                                                3  2 x
                   soft exoskeletons. ACS. Nano. 2020, 14, 11860-75.  DOI
               18.      Xu, X.; Li, Z.; Hu, M.; et al. High sensitivity and antifreeze silver nanowire/eutectic gel strain sensor for human motion and healthcare
                   monitoring. IEEE. Sensors. J. 2024, 24, 5928-35.  DOI
               19.      Jung, H. H.; Lee, H.; Yea, J.; Jang, K. Wearable electrochemical sensors for real-time monitoring in diabetes mellitus and associated
                   complications. Soft. Sci. 2024, 4, 15.  DOI
               20.      Choi, S.; Han, S. I.; Kim, D.; Hyeon, T.; Kim, D. H. High-performance stretchable conductive nanocomposites: materials, processes,
                   and device applications. Chem. Soc. Rev. 2019, 48, 1566-95.  DOI  PubMed
               21.      Guo, D.; Pan, X.; He, H. Effects of temperature on MWCNTs/PDMS composites based flexible strain sensors. J. Cent. South. Univ.
                   2020, 27, 3202-12.  DOI
               22.      Huang, X.; Qi, X.; Boey, F.; Zhang, H. Graphene-based composites. Chem. Soc. Rev. 2012, 41, 666-86.  DOI  PubMed
               23.      Zheng, Q.; Lee, J.; Shen, X.; Chen, X.; Kim, J. Graphene-based wearable piezoresistive physical sensors. Mater. Today. 2020, 36, 158-
                   79.  DOI
               24.      He, P.; Derby, B. Inkjet printing ultra-large graphene oxide flakes. 2D. Mater. 2017, 4, 021021.  DOI
               25.      Wu, L.; Li, Y.; Chen, J.; Zhang, R.; Zhang, Q.; Xiao, Y. Rare earth modified reduced graphene oxide reinforced AgCuTi composite
                   brazing filler for brazing C/C composites. J. Cent. South. Univ. 2024, 31, 1398-411.  DOI
               26.      Li, X.; Cai, W.; An, J.; et al. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 2009, 324,
                   1312-4.  DOI  PubMed
               27.      Deng, C.; Gao, P.; Lan, L.; et al. Ultrasensitive and highly stretchable multifunctional strain sensors with timbre-recognition ability
                   based on vertical graphene. Adv. Funct. Mater. 2019, 29, 1907151.  DOI
               28.      Huang, K.; Dong, S.; Yang, J.; et al. Three-dimensional printing of a tunable graphene-based elastomer for strain sensors with
                   ultrahigh sensitivity. Carbon 2019, 143, 63-72.  DOI
               29.      Wang, R.; Jiang, N.; Su, J.; et al. A Bi-Sheath fiber sensor for giant tensile and torsional displacements. Adv. Funct. Materials. 2017,
                   27, 1702134.  DOI
               30.      Zeng, X.; Hu, M.; He, P.; et al. Highly conductive carbon-based E-textile for gesture recognition. IEEE. Electron. Device. Lett. 2023,
                   44, 825-8.  DOI
               31.      Liu, Q.; Ramakrishna, S.; Long, Y. Electrospun flexible sensor. J. Semicond. 2019, 40, 111603.  DOI
               32.      Seyedin, S.; Zhang, P.; Naebe, M.; et al. Textile strain sensors: a review of the fabrication technologies, performance evaluation and
                   applications. Mater. Horiz. 2019, 6, 219-49.  DOI
               33.      Huang, T.; He, P.; Wang, R.; et al. Porous fibers composed of polymer nanoball decorated graphene for wearable and highly sensitive
                   strain sensors. Adv. Funct. Mater. 2019, 29, 1903732.  DOI
               34.      Tian, X.; Chan, K.; Hua, T.; Niu, B.; Chen, S. Wearable strain sensors enabled by integrating one-dimensional polydopamine-
                   enhanced graphene/polyurethane sensing fibers into textile structures. J. Mater. Sci. 2020, 55, 17266-83.  DOI
               35.      Heo, J. S.; Shishavan, H. H.; Soleymanpour, R.; Kim, J.; Kim, I. Textile-based stretchable and flexible glove sensor for monitoring
                   upper extremity prosthesis functions. IEEE. Sensors. J. 2020, 20, 1754-60.  DOI
               36.      Zhu, H.; Gao, H.; Zhao, H.; et al. Printable elastic silver nanowire-based conductor for washable electronic textiles. Nano. Res. 2020,
                   13, 2879-84.  DOI
               37.      Luo, C.; Tian, B.; Liu, Q.; Feng, Y.; Wu, W. One-step-printed, highly sensitive, textile-based, tunable performance strain sensors for
   83   84   85   86   87   88   89   90   91   92   93