Page 148 - Read Online
P. 148

Sun et al. Soft Sci. 2025, 5, 18  https://dx.doi.org/10.20517/ss.2024.77        Page 25 of 26

               80.       Xue, F.; Chen, L.; Wang, L.; et al. MoS  tribotronic transistor for smart tactile switch. Adv. Funct. Mater. 2016, 26, 2104-9.  DOI
                                             2
               81.       Chen, L.; Wen, C.; Zhang, S.; Wang, Z. L.; Zhang, Z. Artificial tactile peripheral nervous system supported by self-powered
                    transducers. Nano. Energy. 2021, 82, 105680.  DOI
               82.       Chen, L.; Karilanova, S.; Chaki, S.; et al. Spike timing-based coding in neuromimetic tactile system enables dynamic object
                    classification. Science 2024, 384, 660-5.  DOI
               83.       Zhong, D.; Wu, C.; Jiang, Y.; et al. High-speed and large-scale intrinsically stretchable integrated circuits. Nature 2024, 627, 313-20.
                    DOI
               84.       Wang, W.; Jiang, Y.; Zhong, D.; et al. Neuromorphic sensorimotor loop embodied by monolithically integrated, low-voltage, soft e-
                    skin. Science 2023, 380, 735-42.  DOI
               85.       Schwartz, G.; Tee, B. C.; Mei, J.; et al. Flexible polymer transistors with high pressure sensitivity for application in electronic skin
                    and health monitoring. Nat. Commun. 2013, 4, 1859.  DOI
               86.       Lee, Y.; Oh, J. Y.; Lee, T. Neuromorphic skin based on emerging artificial synapses. Adv. Mater. Technol. 2022, 7, 2200193.  DOI
               87.       Su, Q.; Zou, Q.; Li, Y.; et al. A stretchable and strain-unperturbed pressure sensor for motion interference-free tactile monitoring on
                    skins. Sci. Adv. 2021, 7, eabi4563.  DOI  PubMed  PMC
               88.       Kweon, H.; Kim, J. S.; Kim, S.; et al. Ion trap and release dynamics enables nonintrusive tactile augmentation in monolithic sensory
                    neuron. Sci. Adv. 2023, 9, eadi3827.  DOI  PubMed  PMC
               89.       Sun, F.; Lu, Q.; Hao, M.; et al. An artificial neuromorphic somatosensory system with spatio-temporal tactile perception and
                    feedback functions. npj. Flex. Electron. 2022, 6, 202.  DOI
               90.       Yang, C.; Wang, H.; Zhou, G.; et al. A multifunctional memristor with coexistence of NDR and RS behaviors for logic operation and
                    somatosensory temperature sensing applications. Nano. Today. 2024, 57, 102382.  DOI
               91.       Wang, L.; Zhang, P.; Gao, Z.; Wen, D. Artificial tactile sensing neuron with tactile sensing ability based on a chitosan memristor.
                    Adv. Sci. 2024, 11, e2308610.  DOI  PubMed  PMC
               92.       Xie, Z.; Zhu, X.; Wang, W.; et al. Temporal pattern coding in ionic memristor-based spiking neurons for adaptive tactile perception.
                    Adv. Elect. Mater. 2022, 8, 2200334.  DOI
               93.       Zhu, J.; Zhang, X.; Wang, M.; et al. An artificial spiking nociceptor integrating pressure sensors and memristors. IEEE. Electron.
                    Device. Lett. 2022, 43, 962-5.  DOI
               94.       Zhu, J.; Zhang, X.; Wang, R.; et al. A heterogeneously integrated spiking neuron array for multimode-fused perception and object
                    classification. Adv. Mater. 2022, 34, e2200481.  DOI
               95.       Wu, Y.; Zhao, R.; Zhu, J.; et al. Brain-inspired global-local learning incorporated with neuromorphic computing. Nat. Commun.
                    2022, 13, 65.  DOI  PubMed  PMC
               96.       Zhou, G.; Wang, Z.; Sun, B.; et al. Volatile and nonvolatile memristive devices for neuromorphic computing. Adv. Elect. Mater.
                    2022, 8, 2101127.  DOI
               97.       Chen, S.; Liu, T.; Jia, Y.; Li, J. Recent advances in bio-integrated electrochemical sensors for neuroengineering. Fundam. Res. 2025,
                    5, 29-47.  DOI
               98.       Roy, K.; Jaiswal, A.; Panda, P. Towards spike-based machine intelligence with neuromorphic computing. Nature 2019, 575, 607-17.
                    DOI  PubMed
               99.       Yuan, R.; Tiw, P. J.; Cai, L.; et al. A neuromorphic physiological signal processing system based on VO  memristor for next-
                                                                                            2
                    generation human-machine interface. Nat. Commun. 2023, 14, 3695.  DOI  PubMed  PMC
               100.      Wang, Z.; Joshi, S.; Savel’ev, S.; et al. Fully memristive neural networks for pattern classification with unsupervised learning. Nat.
                    Electron. 2018, 1, 137-45.  DOI
               101.      Serb, A.; Bill, J.; Khiat, A.; Berdan, R.; Legenstein, R.; Prodromakis, T. Unsupervised learning in probabilistic neural networks with
                    multi-state metal-oxide memristive synapses. Nat. Commun. 2016, 7, 12611.  DOI  PubMed  PMC
               102.      Fang, W.; Chen, Y.; Ding, J.; et al. SpikingJelly: an open-source machine learning infrastructure platform for spike-based
                    intelligence. Sci. Adv. 2023, 9, eadi1480.  DOI  PubMed  PMC
               103.      Yao, P.; Wu, H.; Gao, B.; et al. Fully hardware-implemented memristor convolutional neural network. Nature 2020, 577, 641-6.  DOI
               104.      Fu, Y.; Zhao, S.; Wang, L.; Zhu, R. A wearable sensor using structured silver-particle reinforced PDMS for radial arterial pulse wave
                    monitoring. Adv. Healthc. Mater. 2019, 8, e1900633.  DOI
               105.      Li, Z.; Li, Z.; Tang, W.; et al. Crossmodal sensory neurons based on high-performance flexible memristors for human-machine in-
                    sensor computing system. Nat. Commun. 2024, 15, 7275.  DOI  PubMed  PMC
               106.      Li, G.; Liu, S.; Mao, Q.; Zhu, R. Multifunctional electronic skins enable robots to safely and dexterously interact with human. Adv.
                    Sci. 2022, 9, e2104969.  DOI  PubMed  PMC
               107.      Son, D.; Kang, J.; Vardoulis, O.; et al. An integrated self-healable electronic skin system fabricated via dynamic reconstruction of a
                    nanostructured conducting network. Nat. Nanotechnol. 2018, 13, 1057-65.  DOI
               108.      Sang, S.; Pei, Z.; Zhang, F.; et al. Three-dimensional printed bimodal electronic skin with high resolution and breathability for hair
                    growth. ACS. Appl. Mater. Interfaces. 2022, 14, 31493-501.  DOI
               109.      Shi, W.; Lyu, Z.; Tang, S.; Chia, T.; Yang, C. A bionic hand controlled by hand gesture recognition based on surface EMG signals: a
                    preliminary study. Biocybern. Biomed. Eng. 2018, 38, 126-35.  DOI
               110.      Gao, W.; Ota, H.; Kiriya, D.; Takei, K.; Javey, A. Flexible electronics toward wearable sensing. Acc. Chem. Res. 2019, 52, 523-33.
                    DOI  PubMed
   143   144   145   146   147   148   149   150   151   152   153