Page 148 - Read Online
P. 148
Sun et al. Soft Sci. 2025, 5, 18 https://dx.doi.org/10.20517/ss.2024.77 Page 25 of 26
80. Xue, F.; Chen, L.; Wang, L.; et al. MoS tribotronic transistor for smart tactile switch. Adv. Funct. Mater. 2016, 26, 2104-9. DOI
2
81. Chen, L.; Wen, C.; Zhang, S.; Wang, Z. L.; Zhang, Z. Artificial tactile peripheral nervous system supported by self-powered
transducers. Nano. Energy. 2021, 82, 105680. DOI
82. Chen, L.; Karilanova, S.; Chaki, S.; et al. Spike timing-based coding in neuromimetic tactile system enables dynamic object
classification. Science 2024, 384, 660-5. DOI
83. Zhong, D.; Wu, C.; Jiang, Y.; et al. High-speed and large-scale intrinsically stretchable integrated circuits. Nature 2024, 627, 313-20.
DOI
84. Wang, W.; Jiang, Y.; Zhong, D.; et al. Neuromorphic sensorimotor loop embodied by monolithically integrated, low-voltage, soft e-
skin. Science 2023, 380, 735-42. DOI
85. Schwartz, G.; Tee, B. C.; Mei, J.; et al. Flexible polymer transistors with high pressure sensitivity for application in electronic skin
and health monitoring. Nat. Commun. 2013, 4, 1859. DOI
86. Lee, Y.; Oh, J. Y.; Lee, T. Neuromorphic skin based on emerging artificial synapses. Adv. Mater. Technol. 2022, 7, 2200193. DOI
87. Su, Q.; Zou, Q.; Li, Y.; et al. A stretchable and strain-unperturbed pressure sensor for motion interference-free tactile monitoring on
skins. Sci. Adv. 2021, 7, eabi4563. DOI PubMed PMC
88. Kweon, H.; Kim, J. S.; Kim, S.; et al. Ion trap and release dynamics enables nonintrusive tactile augmentation in monolithic sensory
neuron. Sci. Adv. 2023, 9, eadi3827. DOI PubMed PMC
89. Sun, F.; Lu, Q.; Hao, M.; et al. An artificial neuromorphic somatosensory system with spatio-temporal tactile perception and
feedback functions. npj. Flex. Electron. 2022, 6, 202. DOI
90. Yang, C.; Wang, H.; Zhou, G.; et al. A multifunctional memristor with coexistence of NDR and RS behaviors for logic operation and
somatosensory temperature sensing applications. Nano. Today. 2024, 57, 102382. DOI
91. Wang, L.; Zhang, P.; Gao, Z.; Wen, D. Artificial tactile sensing neuron with tactile sensing ability based on a chitosan memristor.
Adv. Sci. 2024, 11, e2308610. DOI PubMed PMC
92. Xie, Z.; Zhu, X.; Wang, W.; et al. Temporal pattern coding in ionic memristor-based spiking neurons for adaptive tactile perception.
Adv. Elect. Mater. 2022, 8, 2200334. DOI
93. Zhu, J.; Zhang, X.; Wang, M.; et al. An artificial spiking nociceptor integrating pressure sensors and memristors. IEEE. Electron.
Device. Lett. 2022, 43, 962-5. DOI
94. Zhu, J.; Zhang, X.; Wang, R.; et al. A heterogeneously integrated spiking neuron array for multimode-fused perception and object
classification. Adv. Mater. 2022, 34, e2200481. DOI
95. Wu, Y.; Zhao, R.; Zhu, J.; et al. Brain-inspired global-local learning incorporated with neuromorphic computing. Nat. Commun.
2022, 13, 65. DOI PubMed PMC
96. Zhou, G.; Wang, Z.; Sun, B.; et al. Volatile and nonvolatile memristive devices for neuromorphic computing. Adv. Elect. Mater.
2022, 8, 2101127. DOI
97. Chen, S.; Liu, T.; Jia, Y.; Li, J. Recent advances in bio-integrated electrochemical sensors for neuroengineering. Fundam. Res. 2025,
5, 29-47. DOI
98. Roy, K.; Jaiswal, A.; Panda, P. Towards spike-based machine intelligence with neuromorphic computing. Nature 2019, 575, 607-17.
DOI PubMed
99. Yuan, R.; Tiw, P. J.; Cai, L.; et al. A neuromorphic physiological signal processing system based on VO memristor for next-
2
generation human-machine interface. Nat. Commun. 2023, 14, 3695. DOI PubMed PMC
100. Wang, Z.; Joshi, S.; Savel’ev, S.; et al. Fully memristive neural networks for pattern classification with unsupervised learning. Nat.
Electron. 2018, 1, 137-45. DOI
101. Serb, A.; Bill, J.; Khiat, A.; Berdan, R.; Legenstein, R.; Prodromakis, T. Unsupervised learning in probabilistic neural networks with
multi-state metal-oxide memristive synapses. Nat. Commun. 2016, 7, 12611. DOI PubMed PMC
102. Fang, W.; Chen, Y.; Ding, J.; et al. SpikingJelly: an open-source machine learning infrastructure platform for spike-based
intelligence. Sci. Adv. 2023, 9, eadi1480. DOI PubMed PMC
103. Yao, P.; Wu, H.; Gao, B.; et al. Fully hardware-implemented memristor convolutional neural network. Nature 2020, 577, 641-6. DOI
104. Fu, Y.; Zhao, S.; Wang, L.; Zhu, R. A wearable sensor using structured silver-particle reinforced PDMS for radial arterial pulse wave
monitoring. Adv. Healthc. Mater. 2019, 8, e1900633. DOI
105. Li, Z.; Li, Z.; Tang, W.; et al. Crossmodal sensory neurons based on high-performance flexible memristors for human-machine in-
sensor computing system. Nat. Commun. 2024, 15, 7275. DOI PubMed PMC
106. Li, G.; Liu, S.; Mao, Q.; Zhu, R. Multifunctional electronic skins enable robots to safely and dexterously interact with human. Adv.
Sci. 2022, 9, e2104969. DOI PubMed PMC
107. Son, D.; Kang, J.; Vardoulis, O.; et al. An integrated self-healable electronic skin system fabricated via dynamic reconstruction of a
nanostructured conducting network. Nat. Nanotechnol. 2018, 13, 1057-65. DOI
108. Sang, S.; Pei, Z.; Zhang, F.; et al. Three-dimensional printed bimodal electronic skin with high resolution and breathability for hair
growth. ACS. Appl. Mater. Interfaces. 2022, 14, 31493-501. DOI
109. Shi, W.; Lyu, Z.; Tang, S.; Chia, T.; Yang, C. A bionic hand controlled by hand gesture recognition based on surface EMG signals: a
preliminary study. Biocybern. Biomed. Eng. 2018, 38, 126-35. DOI
110. Gao, W.; Ota, H.; Kiriya, D.; Takei, K.; Javey, A. Flexible electronics toward wearable sensing. Acc. Chem. Res. 2019, 52, 523-33.
DOI PubMed

