Page 146 - Read Online
P. 146
Sun et al. Soft Sci. 2025, 5, 18 https://dx.doi.org/10.20517/ss.2024.77 Page 23 of 26
Fundam. Res. 2023, 3, 960-6. DOI PubMed PMC
19. Chen, C.; Zhou, Y.; Tong, L.; Pang, Y.; Xu, J. Emerging 2D ferroelectric devices for in-sensor and in-memory computing. Adv.
Mater. 2025, 37, e2400332. DOI PubMed PMC
20. Demasius, K.; Kirschen, A.; Parkin, S. Energy-efficient memcapacitor devices for neuromorphic computing. Nat. Electron. 2021, 4,
748-56. DOI
21. Teja Nibhanupudi, S. S.; Roy, A.; Veksler, D.; et al. Ultra-fast switching memristors based on two-dimensional materials. Nat.
Commun. 2024, 15, 2334. DOI PubMed PMC
22. Fu, G. E.; Yang, H.; Zhao, W.; Samorì, P.; Zhang, T. 2D conjugated polymer thin films for organic electronics: opportunities and
challenges. Adv. Mater. 2024, 36, e2311541. DOI PubMed
23. Lv, Z.; Jiang, M. H.; Liu, H. Y.; et al. Temperature-resilient polymeric memristors for effective deblurring in static and dynamic
imaging. Adv. Funct. Mater. 2025, 2424382. DOI
24. Liu, Y.; Fischer, F.; Hu, H.; et al. Inkjet printed metal–organic frameworks for non-volatile memory devices suitable for printed
RRAM. Adv. Funct. Mater. 2025, 35, 2412372. DOI
25. Qian, F.; Bu, X.; Wang, J.; Lv, Z.; Han, S.; Zhou, Y. Evolutionary 2D organic crystals for optoelectronic transistors and
neuromorphic computing. Neuromorph. Comput. Eng. 2022, 2, 012001. DOI
26. Duan, X.; Cao, Z.; Gao, K.; et al. Memristor-based neuromorphic chips. Adv. Mater. 2024, 36, e2310704. DOI
27. Kim, T.; Hu, S.; Kim, J.; et al. Spiking neural network (SNN) with memristor synapses having non-linear weight update. Front.
Comput. Neurosci. 2021, 15, 646125. DOI PubMed PMC
28. Krauhausen, I.; Coen, C.; Spolaor, S.; Gkoupidenis, P.; van de Burgt, Y. Brain-inspired organic electronics: merging neuromorphic
computing and bioelectronics using conductive polymers. Adv. Funct. Mater. 2024, 34, 2307729. DOI
29. Kotsiantis, S. B.; Zaharakis, I. D.; Pintelas, P. E. Machine learning: a review of classification and combining techniques. Artif. Intell.
Rev. 2006, 26, 159-90. DOI
30. Peng, H.; Gan, L.; Guo, X. Memristor-based spiking neural networks: cooperative development of neural network architecture/
algorithms and memristors. Chip 2024, 3, 100093. DOI
31. Chen, J.; Skatchkovsky, N.; Simeone, O. Neuromorphic integrated sensing and communications. IEEE. Wireless. Commun. Lett.
2023, 12, 476-80. DOI
32. Chen, J.; Skatchkovsky, N.; Simeone, O. Neuromorphic Wireless cognition: event-driven semantic communications for remote
inference. IEEE. Trans. Cogn. Commun. Netw. 2023, 9, 252-65. DOI
33. Ng, S. E.; Vishwanath, S. K.; Yang, J.; et al. Advances in multi-terminal transistors as reconfigurable interconnections for
neuromorphic sensing and processing. Adv. Elect. Mater. 2024, 10, 2300540. DOI
34. Fang, S. L.; Han, C. Y.; Han, Z. R.; et al. An artificial spiking afferent neuron system achieved by 1M1S for neuromorphic
computing. IEEE. Trans. Electron. Devices. 2022, 69, 2346-52. DOI
35. Jang, H.; Lee, J.; Beak, C. J.; Biswas, S.; Lee, S. H.; Kim, H. Flexible neuromorphic electronics for wearable near-sensor and in-
sensor computing systems. Adv. Mater. 2025, 37, e2416073. DOI PubMed
36. Zhang, H.; Qiu, P.; Lu, Y.; et al. In-sensor computing realization using fully CMOS-compatible TiN/HfO -based neuristor array.
x
ACS. Sens. 2023, 8, 3873-81. DOI
37. Zhu, Y.; Mao, H.; Zhu, Y.; et al. CMOS-compatible neuromorphic devices for neuromorphic perception and computing: a review.
Int. J. Extrem. Manuf. 2023, 5, 042010. DOI
38. Schuman, C. D.; Kulkarni, S. R.; Parsa, M.; Mitchell, J. P.; Date, P.; Kay, B. Opportunities for neuromorphic computing algorithms
and applications. Nat. Comput. Sci. 2022, 2, 10-9. DOI
39. Sandamirskaya, Y.; Kaboli, M.; Conradt, J.; Celikel, T. Neuromorphic computing hardware and neural architectures for robotics. Sci.
Robot. 2022, 7, eabl8419. DOI PubMed
40. Kong, H.; Li, W.; Song, Z.; Niu, L. Recent advances in multimodal sensing integration and decoupling strategies for tactile
perception. Mater. Futures. 2024, 3, 022501. DOI
41. Liu, Y.; Wang, J.; Liu, T.; et al. Triboelectric tactile sensor for pressure and temperature sensing in high-temperature applications.
Nat. Commun. 2025, 16, 383. DOI PubMed PMC
42. Neupane, B.; Aryal, J.; Rajabifard, A. CNNs for remote extraction of urban features: a survey-driven benchmarking. Expert. Syst.
Appl. 2024, 255, 124751. DOI
43. Zheng, X.; Zhang, L.; Xu, C.; Chen, X.; Cui, Z. An attribution graph-based interpretable method for CNNs. Neural. Netw. 2024, 179,
106597. DOI
44. Xu, K.; Cai, Z.; Luo, H.; et al. Toward integrated multifunctional laser-induced graphene-based skin-like flexible sensor systems.
ACS. Nano. 2024, 18, 26435-76. DOI
45. Su, Y.; Otake, K. I.; Zheng, J. J.; et al. Switching molecular recognition selectivities by temperature in a diffusion-regulatory porous
material. Nat. Commun. 2024, 15, 144. DOI PubMed PMC
46. Casanova-Chafer, J. Roadmap for borophene gas sensors. ACS. Sens. 2025, 10, 76-99. DOI PubMed
47. Wang, W.; Yao, D.; Wang, H.; et al. A breathable, stretchable, and self-calibrated multimodal electronic skin based on hydrogel
microstructures for wireless wearables. Adv. Funct. Mater. 2024, 34, 2316339. DOI
48. Ferreira, R. G.; Silva, A. P.; Nunes-Pereira, J. Current on-skin flexible sensors, materials, manufacturing approaches, and study trends
for health monitoring: a review. ACS. Sens. 2024, 9, 1104-33. DOI PubMed PMC

