Page 147 - Read Online
P. 147

Page 24 of 26                           Sun et al. Soft Sci. 2025, 5, 18  https://dx.doi.org/10.20517/ss.2024.77

               49.       Ahmed, S. M.; Soin, N.; Hatta, S. F. W. M.; Wahab, Y. A. Flexible CNT/silicon piezo-resistive strain sensors geometrical influences
                    on sensitivity for human motion detection. J. Comput. Electron. 2024, 23, 456-66.  DOI
               50.       Joshi, A.; Kanungo, D. P.; Panigrahi, R. K. Multi-frame fringing field capacitive soil moisture sensor with enhanced sensitivity and
                    penetration depth. IEEE. Trans. Instrum. Meas. 2024, 73, 1-13.  DOI
               51.       Xiong, J.; Cui, P.; Chen, X.; et al. Skin-touch-actuated textile-based triboelectric nanogenerator with black phosphorus for durable
                    biomechanical energy harvesting. Nat. Commun. 2018, 9, 4280.  DOI  PubMed  PMC
               52.       Liu, Z.; Chen, D.; Ma, J.; Wang, T.; Jia, D.; Liu, Y. Multimodal capacitive proximity sensing array with programmable spatial
                    resolution and dynamic detection range. Sens. Actuators. A. Phys. 2024, 370, 115279.  DOI
               53.       Wang, L.; Qi, X.; Li, C.; Wang, Y. Multifunctional tactile sensors for object recognition. Adv. Funct. Mater. 2024, 34, 2409358.  DOI
               54.       Dai, Y.; Yang, C.; Liu, K.; Liu, A.; Liu, Y. TimeDDPM: time series augmentation strategy for industrial soft sensing. IEEE. Sensors.
                    J. 2024, 24, 2145-53.  DOI
               55.       Geng, H.; Liu, H.; Ma, L.; Yi, X. Multi-sensor filtering fusion meets censored measurements under a constrained network
                    environment: advances, challenges and prospects. Int. J. Syst. Sci. 2021, 52, 3410-36.  DOI
               56.       Li, D.; Yao, K.; Gao, Z.; Liu, Y.; Yu, X. Recent progress of skin-integrated electronics for intelligent sensing. Light. Adv. Manuf.
                    2021, 2, 39-58.  DOI
               57.       Yuan, X.; Ou, C.; Wang, Y.; Yang, C.; Gui, W. A layer-wise data augmentation strategy for deep learning networks and its soft
                    sensor application in an industrial hydrocracking process. IEEE. Trans. Neural. Netw. Learn. Syst. 2021, 32, 3296-305.  DOI
               58.       Naqi, M.; Yu, Y.; Cho, Y.; et al. Integration of IGZO-based memristor and Pt-based temperature sensor for enhanced artificial
                    nociceptor system. Mater. Today. Nano. 2024, 27, 100491.  DOI
               59.       Wei, Y.; Xiang, L.; Zhu, P.; Qian, Y.; Zhao, B.; Chen, G. Multifunctional organohydrogel-based ionic skin for capacitance and
                    temperature sensing toward intelligent skin-like devices. Chem. Mater. 2021, 33, 8623-34.  DOI
               60.       Liu, Z.; Tian, B.; Zhang, B.; et al. A thin-film temperature sensor based on a flexible electrode and substrate. Microsyst. Nanoeng.
                    2021, 7, 42.  DOI  PubMed  PMC
               61.       Ma, C.; Xu, D.; Huang, Y. C.; et al. Robust flexible pressure sensors made from conductive micropyramids for manipulation tasks.
                    ACS. Nano. 2020, 14, 12866-76.  DOI
               62.       Ji, J.; Zhao, W.; Wang, Y.; Li, Q.; Wang, G. Templated laser-induced-graphene-based tactile sensors enable wearable health
                    monitoring and texture recognition via deep neural network. ACS. Nano. 2023, 17, 20153-66.  DOI
               63.       Zou, Y.; Gai, Y.; Tan, P.; et al. Stretchable graded multichannel self-powered respiratory sensor inspired by shark gill. Fundam. Res.
                    2022, 2, 619-28.  DOI  PubMed  PMC
               64.       Xie, X.; Wang, Q.; Zhao, C.; et al. Neuromorphic computing-assisted triboelectric capacitive-coupled tactile sensor array for wireless
                    mixed reality interaction. ACS. Nano. 2024, 18, 17041-52.  DOI
               65.       Wu, C.; Kim, T. W.; Park, J. H.; et al. Self-powered tactile sensor with learning and memory. ACS. Nano. 2020, 14, 1390-8.  DOI
               66.       Chen, S.; Xin, S.; Yang, L.; Guo, Y.; Zhang, W.; Sun, K. Multi-sized planar capacitive pressure sensor with ultra-high sensitivity.
                    Nano. Energy. 2021, 87, 106178.  DOI
               67.       Lee, H. K.; Chung, J.; Chang, S.; Yoon, E. Normal and shear force measurement using a flexible polymer tactile sensor with
                    embedded multiple capacitors. J. Microelectromech. Syst. 2008, 17, 934-42.  DOI
               68.       Zhu, Y.; Wu, Y.; Wang, G.; et al. A flexible capacitive pressure sensor based on an electrospun polyimide nanofiber membrane. Org.
                    Electron. 2020, 84, 105759.  DOI
               69.       Li, H.; Wang, Z.; Sun, M.; et al. Breathable and skin-conformal electronics with hybrid integration of microfabricated multifunctional
                    sensors and kirigami-structured nanofibrous substrates. Adv. Funct. Mater. 2022, 32, 2202792.  DOI
               70.       Lee, J. H.; Cho, K.; Kim, J. K. Age of flexible electronics: emerging trends in soft multifunctional sensors. Adv. Mater. 2024, 36,
                    e2310505.  DOI  PubMed
               71.       Luo, H.; Pang, G.; Xu, K.; Ye, Z.; Yang, H.; Yang, G. A fully printed flexible sensor sheet for simultaneous proximity–pressure–
                    temperature detection. Adv. Mater. Technol. 2021, 6, 2100616.  DOI
               72.       Yang, Q.; Ye, Z.; Wu, R.; et al. A highly sensitive iontronic bimodal sensor with pressure-temperature discriminability for robot skin.
                    Adv. Mater. Technol. 2023, 8, 2300561.  DOI
               73.       Liu, Z.; Hu, X.; Bo, R.; et al. A three-dimensionally architected electronic skin mimicking human mechanosensation. Science 2024,
                    384, 987-94.  DOI
               74.       Li, P.; Xie, L.; Su, M.; et al. Skin-inspired large area iontronic pressure sensor with ultra-broad range and high sensitivity. Nano.
                    Energy. 2022, 101, 107571.  DOI
               75.       Fang, Z.; Yu, H. Y.; Li, X.; Singh, N.; Lo, G. Q.; Kwong, D. L. HfO /TiO /HfO /TiO  multilayer-based forming-free RRAM devices
                                                                x   x   x  x
                    with excellent uniformity. IEEE. Electron. Device. Lett. 2011, 32, 566-8.  DOI
               76.       Fan, J.; Feng, J.; Gao, Y.; et al. PEDOT-ZnO nanoparticle hybrid film-based memristors for synapse emulation in neuromorphic
                    computing applications. ACS. Appl. Nano. Mater. 2024, 7, 5661-8.  DOI
               77.       Xu, Y.; Wang, H.; Ye, D.; Yang, R.; Huang, Y.; Miao, X. Electrohydrodynamically printed flexible organic memristor for leaky
                    integrate and fire neuron. IEEE. Electron. Device. Lett. 2022, 43, 116-9.  DOI
               78.       Strukov, D. B.; Snider, G. S.; Stewart, D. R.; Williams, R. S. The missing memristor found. Nature 2008, 453, 80-3.  DOI  PubMed
               79.       Duan, Q.; Jing, Z.; Zou, X.; et al. Spiking neurons with spatiotemporal dynamics and gain modulation for monolithically integrated
                    memristive neural networks. Nat. Commun. 2020, 11, 3399.  DOI  PubMed  PMC
   142   143   144   145   146   147   148   149   150   151   152