Page 147 - Read Online
P. 147
Page 24 of 26 Sun et al. Soft Sci. 2025, 5, 18 https://dx.doi.org/10.20517/ss.2024.77
49. Ahmed, S. M.; Soin, N.; Hatta, S. F. W. M.; Wahab, Y. A. Flexible CNT/silicon piezo-resistive strain sensors geometrical influences
on sensitivity for human motion detection. J. Comput. Electron. 2024, 23, 456-66. DOI
50. Joshi, A.; Kanungo, D. P.; Panigrahi, R. K. Multi-frame fringing field capacitive soil moisture sensor with enhanced sensitivity and
penetration depth. IEEE. Trans. Instrum. Meas. 2024, 73, 1-13. DOI
51. Xiong, J.; Cui, P.; Chen, X.; et al. Skin-touch-actuated textile-based triboelectric nanogenerator with black phosphorus for durable
biomechanical energy harvesting. Nat. Commun. 2018, 9, 4280. DOI PubMed PMC
52. Liu, Z.; Chen, D.; Ma, J.; Wang, T.; Jia, D.; Liu, Y. Multimodal capacitive proximity sensing array with programmable spatial
resolution and dynamic detection range. Sens. Actuators. A. Phys. 2024, 370, 115279. DOI
53. Wang, L.; Qi, X.; Li, C.; Wang, Y. Multifunctional tactile sensors for object recognition. Adv. Funct. Mater. 2024, 34, 2409358. DOI
54. Dai, Y.; Yang, C.; Liu, K.; Liu, A.; Liu, Y. TimeDDPM: time series augmentation strategy for industrial soft sensing. IEEE. Sensors.
J. 2024, 24, 2145-53. DOI
55. Geng, H.; Liu, H.; Ma, L.; Yi, X. Multi-sensor filtering fusion meets censored measurements under a constrained network
environment: advances, challenges and prospects. Int. J. Syst. Sci. 2021, 52, 3410-36. DOI
56. Li, D.; Yao, K.; Gao, Z.; Liu, Y.; Yu, X. Recent progress of skin-integrated electronics for intelligent sensing. Light. Adv. Manuf.
2021, 2, 39-58. DOI
57. Yuan, X.; Ou, C.; Wang, Y.; Yang, C.; Gui, W. A layer-wise data augmentation strategy for deep learning networks and its soft
sensor application in an industrial hydrocracking process. IEEE. Trans. Neural. Netw. Learn. Syst. 2021, 32, 3296-305. DOI
58. Naqi, M.; Yu, Y.; Cho, Y.; et al. Integration of IGZO-based memristor and Pt-based temperature sensor for enhanced artificial
nociceptor system. Mater. Today. Nano. 2024, 27, 100491. DOI
59. Wei, Y.; Xiang, L.; Zhu, P.; Qian, Y.; Zhao, B.; Chen, G. Multifunctional organohydrogel-based ionic skin for capacitance and
temperature sensing toward intelligent skin-like devices. Chem. Mater. 2021, 33, 8623-34. DOI
60. Liu, Z.; Tian, B.; Zhang, B.; et al. A thin-film temperature sensor based on a flexible electrode and substrate. Microsyst. Nanoeng.
2021, 7, 42. DOI PubMed PMC
61. Ma, C.; Xu, D.; Huang, Y. C.; et al. Robust flexible pressure sensors made from conductive micropyramids for manipulation tasks.
ACS. Nano. 2020, 14, 12866-76. DOI
62. Ji, J.; Zhao, W.; Wang, Y.; Li, Q.; Wang, G. Templated laser-induced-graphene-based tactile sensors enable wearable health
monitoring and texture recognition via deep neural network. ACS. Nano. 2023, 17, 20153-66. DOI
63. Zou, Y.; Gai, Y.; Tan, P.; et al. Stretchable graded multichannel self-powered respiratory sensor inspired by shark gill. Fundam. Res.
2022, 2, 619-28. DOI PubMed PMC
64. Xie, X.; Wang, Q.; Zhao, C.; et al. Neuromorphic computing-assisted triboelectric capacitive-coupled tactile sensor array for wireless
mixed reality interaction. ACS. Nano. 2024, 18, 17041-52. DOI
65. Wu, C.; Kim, T. W.; Park, J. H.; et al. Self-powered tactile sensor with learning and memory. ACS. Nano. 2020, 14, 1390-8. DOI
66. Chen, S.; Xin, S.; Yang, L.; Guo, Y.; Zhang, W.; Sun, K. Multi-sized planar capacitive pressure sensor with ultra-high sensitivity.
Nano. Energy. 2021, 87, 106178. DOI
67. Lee, H. K.; Chung, J.; Chang, S.; Yoon, E. Normal and shear force measurement using a flexible polymer tactile sensor with
embedded multiple capacitors. J. Microelectromech. Syst. 2008, 17, 934-42. DOI
68. Zhu, Y.; Wu, Y.; Wang, G.; et al. A flexible capacitive pressure sensor based on an electrospun polyimide nanofiber membrane. Org.
Electron. 2020, 84, 105759. DOI
69. Li, H.; Wang, Z.; Sun, M.; et al. Breathable and skin-conformal electronics with hybrid integration of microfabricated multifunctional
sensors and kirigami-structured nanofibrous substrates. Adv. Funct. Mater. 2022, 32, 2202792. DOI
70. Lee, J. H.; Cho, K.; Kim, J. K. Age of flexible electronics: emerging trends in soft multifunctional sensors. Adv. Mater. 2024, 36,
e2310505. DOI PubMed
71. Luo, H.; Pang, G.; Xu, K.; Ye, Z.; Yang, H.; Yang, G. A fully printed flexible sensor sheet for simultaneous proximity–pressure–
temperature detection. Adv. Mater. Technol. 2021, 6, 2100616. DOI
72. Yang, Q.; Ye, Z.; Wu, R.; et al. A highly sensitive iontronic bimodal sensor with pressure-temperature discriminability for robot skin.
Adv. Mater. Technol. 2023, 8, 2300561. DOI
73. Liu, Z.; Hu, X.; Bo, R.; et al. A three-dimensionally architected electronic skin mimicking human mechanosensation. Science 2024,
384, 987-94. DOI
74. Li, P.; Xie, L.; Su, M.; et al. Skin-inspired large area iontronic pressure sensor with ultra-broad range and high sensitivity. Nano.
Energy. 2022, 101, 107571. DOI
75. Fang, Z.; Yu, H. Y.; Li, X.; Singh, N.; Lo, G. Q.; Kwong, D. L. HfO /TiO /HfO /TiO multilayer-based forming-free RRAM devices
x x x x
with excellent uniformity. IEEE. Electron. Device. Lett. 2011, 32, 566-8. DOI
76. Fan, J.; Feng, J.; Gao, Y.; et al. PEDOT-ZnO nanoparticle hybrid film-based memristors for synapse emulation in neuromorphic
computing applications. ACS. Appl. Nano. Mater. 2024, 7, 5661-8. DOI
77. Xu, Y.; Wang, H.; Ye, D.; Yang, R.; Huang, Y.; Miao, X. Electrohydrodynamically printed flexible organic memristor for leaky
integrate and fire neuron. IEEE. Electron. Device. Lett. 2022, 43, 116-9. DOI
78. Strukov, D. B.; Snider, G. S.; Stewart, D. R.; Williams, R. S. The missing memristor found. Nature 2008, 453, 80-3. DOI PubMed
79. Duan, Q.; Jing, Z.; Zou, X.; et al. Spiking neurons with spatiotemporal dynamics and gain modulation for monolithically integrated
memristive neural networks. Nat. Commun. 2020, 11, 3399. DOI PubMed PMC

