Page 106 - Read Online
P. 106
Tang et al. Soft Sci. 2025, 5, 11 https://dx.doi.org/10.20517/ss.2024.62 Page 17 of 21
Authors’ contributions
Manuscript structuring and writing: Tang, X.
Manuscript editing: Qi, C.
Manuscript structuring and editing: Sun, Q.
Availability of data and materials
Not applicable.
Financial support and sponsorship
This work was supported by Sichuan Science and Technology Program (Grant Nos. 2023YFG0220 and
2023ZYD0064) and the Fundamental Research Funds for the Central Universities and Research Funding
from West China School/Hospital of Stomatology Sichuan University (No. QDJF2022-2).
Conflicts of interest
All authors declare that there are no conflicts of interest.
Ethical approval and consent to participate
Not applicable.
Consent for publication
Not applicable.
Copyright
© The Author(s) 2025.
REFERENCES
1. Nguyen, A. T.; Tjulkins, F.; Aasmundtveit, K. E.; Hoivik, N.; Hoff, L.; Imenes, K. Miniaturization of package for an implantable
heart monitoring device. Microsyst. Technol. 2015, 21, 1813-26. DOI
2. Sun, B.; Huang, X. Seeking advanced thermal management for stretchable electronics. npj. Flex. Electron. 2021, 5, 109. DOI
3. Linh, V. T. N.; Han, S.; Koh, E.; Kim, S.; Jung, H. S.; Koo, J. Advances in wearable electronics for monitoring human organs:
bridging external and internal health assessments. Biomaterials 2025, 314, 122865. DOI PubMed
4. Dong, B.; Shi, Q.; Yang, Y.; Wen, F.; Zhang, Z.; Lee, C. Technology evolution from self-powered sensors to AIoT enabled smart
homes. Nano. Energy. 2021, 79, 105414. DOI
5. Xu, C.; Song, Y.; Han, M.; Zhang, H. Portable and wearable self-powered systems based on emerging energy harvesting technology.
Microsyst. Nanoeng. 2021, 7, 25. DOI PubMed PMC
6. Ahn, J.; Cho, S.; Wu, L.; et al. Innovations in self-powered sensors utilizing light, thermal, and mechanical renewable energy. Nano.
Energy. 2024, 129, 110045. DOI
7. Twaha, S.; Zhu, J.; Yan, Y.; Li, B. A comprehensive review of thermoelectric technology: materials, applications, modelling and
performance improvement. Renew. Sustain. Energy. Rev. 2016, 65, 698-726. DOI
8. Jaziri, N.; Boughamoura, A.; Müller, J.; Mezghani, B.; Tounsi, F.; Ismail, M. A comprehensive review of thermoelectric generators:
technologies and common applications. Energy. Reports. 2020, 6, 264-87. DOI
9. Wu, Z.; Zhang, S.; Liu, Z.; Mu, E.; Hu, Z. Thermoelectric converter: strategies from materials to device application. Nano. Energy.
2022, 91, 106692. DOI
10. Hou, C.; Zhu, M. Semiconductors flex thermoelectric power. Science 2022, 377, 815-6. DOI PubMed
11. Riffat, S.; Ma, X. Thermoelectrics: a review of present and potential applications. Appl. Therm. Eng. 2003, 23, 913-35. DOI
12. Wang, Y.; Zhu, W.; Deng, Y.; et al. High-sensitivity self-powered temperature/pressure sensor based on flexible Bi-Te thermoelectric
film and porous microconed elastomer. J. Mater. Sci. Technol. 2022, 103, 1-7. DOI
13. Jia, Y.; Zhang, S.; Li, J.; et al. Wearable device with high thermoelectric performance and long-lasting usability based on gel-
thermocells for body heat harvesting. Small 2024, 20, e2401427. DOI PubMed
14. Liu, Z.; Tian, B.; Zhang, B.; et al. A thin-film temperature sensor based on a flexible electrode and substrate. Microsyst. Nanoeng.
2021, 7, 42. DOI PubMed PMC
15. Paganelli, A. I.; Mondéjar, A. G.; da, S. A. C.; et al. Real-time data analysis in health monitoring systems: a comprehensive
systematic literature review. J. Biomed. Inform. 2022, 127, 104009. DOI PubMed

