Page 108 - Read Online
P. 108
Tang et al. Soft Sci. 2025, 5, 11 https://dx.doi.org/10.20517/ss.2024.62 Page 19 of 21
47. Hicks, L. D.; Dresselhaus, M. S. Thermoelectric figure of merit of a one-dimensional conductor. Phys. Rev. B. 1993, 47, 16631-4.
DOI PubMed
48. Oxandale, S. W.; Reinke, C.; Das, S. R.; El-kady, I. Enhanced thermoelectric performance via quantum confinement in a metal oxide
semiconductor field effect transistor for thermal management. Commun. Mater. 2023, 4, 397. DOI
49. Ma, J.; Delaire, O.; May, A. F.; et al. Glass-like phonon scattering from a spontaneous nanostructure in AgSbTe . Nat. Nanotechnol.
2
2013, 8, 445-51. DOI PubMed
50. Liu, F.; Zhang, M.; Nan, P.; et al. Unraveling the origin of donor - like effect in bismuth -telluride-based thermoelectric materials.
Small. Science. 2023, Epub ahead of print. DOI
51. Mathew, S. S.; Sangeeta; Kumar, R.; Singh, M.; Kashyap, M. K. Optimizing carrier concentration for enhanced thermoelectric
performance in AgSbS monolayer. Ionics 2024, 30, 8647-57. DOI
2
52. Musah, J.; Ilyas, A.; Novitskii, A.; et al. Effective decoupling of seebeck coefficient and the electrical conductivity through isovalent
substitution of erbium in bismuth selenide thermoelectric material. J. Alloys. Compd. 2021, 857, 157559. DOI
53. Shalini, M.; Nanthini, S.; Veluswamy, P.; et al. Facet dependent ultralow thermal conductivity of zinc oxide coated silver fabric for
thermoelectric devices. Sci. Rep. 2024, 14, 27210. DOI PubMed PMC
54. Qi, X.; Kang, T.; Yang, L.; et al. Simultaneous suppression of phonon transport and carrier concentration for efficient rhombohedral
GeTe thermoelectric. Adv. Sci. 2024, 11, e2407413. DOI PubMed PMC
55. Gong, Y.; Dou, W.; Lu, B.; et al. Divacancy and resonance level enables high thermoelectric performance in n-type SnSe
polycrystals. Nat. Commun. 2024, 15, 4231. DOI PubMed PMC
56. Jia, B.; Wu, D.; Xie, L.; et al. Pseudo-nanostructure and trapped-hole release induce high thermoelectric performance in PbTe.
Science 2024, 384, 81-6. DOI PubMed
57. Wang, X.; Huang, Y. T.; Liu, C.; et al. Direct thermal charging cell for converting low-grade heat to electricity. Nat. Commun. 2019,
10, 4151. DOI PubMed PMC
58. Dong, S.; Cabral, D. M.; Pringle, J. M.; Macfarlane, D. R. Exploring the electrochemical properties of mixed ligand Fe(II) complexes
as redox couples. Electrochim. Acta. 2020, 362, 137109. DOI
59. Han, C. G.; Qian, X.; Li, Q.; et al. Giant thermopower of ionic gelatin near room temperature. Science 2020, 368, 1091-8. DOI
PubMed
60. Li, Z.; Xu, Y.; Wu, L.; et al. Zinc ion thermal charging cell for low-grade heat conversion and energy storage. Nat. Commun. 2022,
13, 132. DOI PubMed PMC
61. Liu, Y.; Cui, M.; Ling, W.; et al. Thermo-electrochemical cells for heat to electricity conversion: from mechanisms, materials,
strategies to applications. Energy. Environ. Sci. 2022, 15, 3670-87. DOI
62. Qian, X.; Ma, Z.; Huang, Q.; Jiang, H.; Yang, R. Thermodynamics of ionic thermoelectrics for low-grade heat harvesting. ACS.
Energy. Lett. 2024, 9, 679-706. DOI
63. Duan, J.; Feng, G.; Yu, B.; et al. Aqueous thermogalvanic cells with a high Seebeck coefficient for low-grade heat harvest. Nat.
Commun. 2018, 9, 5146. DOI PubMed PMC
64. Wang, Z.; Li, N.; Yang, X.; Zhang, Z.; Zhang, H.; Cui, X. Thermogalvanic hydrogel-based e-skin for self-powered on-body dual-
modal temperature and strain sensing. Microsyst. Nanoeng. 2024, 10, 55. DOI PubMed PMC
65. Yang, K.; Bai, C.; Liu, B.; Liu, Z.; Cui, X. Self-powered, non-toxic, recyclable thermogalvanic hydrogel sensor for temperature
monitoring of edibles. Micromachines 2023, 14, 1327. DOI PubMed PMC
66. Li, T.; Zhang, X.; Lacey, S. D.; et al. Cellulose ionic conductors with high differential thermal voltage for low-grade heat harvesting.
Nat. Mater. 2019, 18, 608-13. DOI PubMed
67. Zhao, D.; Martinelli, A.; Willfahrt, A.; et al. Polymer gels with tunable ionic Seebeck coefficient for ultra-sensitive printed
thermopiles. Nat. Commun. 2019, 10, 1093. DOI PubMed PMC
68. He, Y.; Li, S.; Chen, R.; et al. Ion-electron coupling enables ionic thermoelectric material with new operation mode and high energy
density. Nanomicro. Lett. 2023, 15, 101. DOI PubMed PMC
69. Kjelstrup, S.; Kristiansen, K. R.; Gunnarshaug, A. F.; Bedeaux, D. Seebeck, Peltier, and Soret effects: on different formalisms for
transport equations in thermogalvanic cells. J. Chem. Phys. 2023, 158, 020901. DOI PubMed
70. Cheng, H.; Ouyang, J. Soret effect of ionic liquid gels for thermoelectric conversion. J. Phys. Chem. Lett. 2022, 13, 10830-42. DOI
PubMed
71. Rahman, M.; Saghir, M. Thermodiffusion or Soret effect: historical review. Int. J. Heat. Mass. Transf. 2014, 73, 693-705. DOI
72. Zhao, D.; Würger, A.; Crispin, X. Ionic thermoelectric materials and devices. J. Energy. Chem. 2021, 61, 88-103. DOI
73. Song, D.; Chi, C.; An, M.; et al. Ionic Seebeck coefficient and figure of merit in ionic thermoelectric materials. Cell. Rep. Phys. Sci.
2022, 3, 101018. DOI
74. Kim, D. H.; Akbar, Z. A.; Malik, Y. T.; Jeon, J. W.; Jang, S. Y. Self-healable polymer complex with a giant ionic thermoelectric
effect. Nat. Commun. 2023, 14, 3246. DOI PubMed PMC
75. Tian, Y.; Yang, X.; Li, K.; et al. High-performance ionic thermoelectric materials and emerging applications of ionic thermoelectric
devices. Mater. Today. Energy. 2023, 36, 101342. DOI
76. Wu, M.; Yao, K.; Li, D.; et al. Self-powered skin electronics for energy harvesting and healthcare monitoring. Mater. Today. Energy.
2021, 21, 100786. DOI
77. Yuan, F.; Wang, W.; Liu, S.; et al. A self-powered three-dimensional integrated e-skin for multiple stimuli recognition. Chem. Eng. J.

