Page 109 - Read Online
P. 109

Page 20 of 21                          Tang et al. Soft Sci. 2025, 5, 11  https://dx.doi.org/10.20517/ss.2024.62

                    2023, 451, 138522.  DOI
               78.       Chugh, V.; Basu, A.; Kaushik, A.; Basu, A. K. E-skin - based advanced wearable technology for health management. Curr. Res.
                    Biotechnol. 2023, 5, 100129.  DOI
               79.       Chen, J.; Chen, X.; Li, H.; Ma, C.; Yu, P.; Zhang, Y. A large-area less-wires stretchable robot electronic skin. Sens. Actuators. A.
                    Phys. 2024, 376, 115618.  DOI
               80.       Núñez C, Manjakkal L, Dahiya R. Energy autonomous electronic skin. npj. Flex. Electron. 2019, 3, 45.  DOI
               81.       Yin, L.; Kim, K. N.; Lv, J.; et al. A self-sustainable wearable multi-modular E-textile bioenergy microgrid system. Nat. Commun.
                    2021, 12, 1542.  DOI  PubMed  PMC
               82.       Sun, X.; Guo, X.; Gao, J.; et al. E-Skin and its advanced applications in ubiquitous health monitoring. Biomedicines 2024, 12, 2307.
                    DOI  PubMed  PMC
               83.       Jabri, M.; Masoumi, S.; Kandukuri, T. R.; Occhipinti, L. G. Flexible thin-film thermoelectric generators for human skin-heat
                    harvesting: a numerical study. Nano. Energy. 2024, 129, 110001.  DOI
               84.       Yuan, J.; Zhu, R.; Li, G. Self-powered electronic skin with multisensory functions based on thermoelectric conversion. Adv. Mater.
                    Technol. 2020, 5, 2000419.  DOI
               85.       Ma, H.; Pu, S.; Wu, H.; et al. Flexible Ag Se thermoelectric films enable the multifunctional thermal perception in electronic skins.
                                               2
                    ACS. Appl. Mater. Interfaces. 2024, 16, 7453-62.  DOI  PubMed
               86.       Han, Y.; Wei, H.; Du, Y.; et al. Ultrasensitive flexible thermal sensor arrays based on high-thermopower ionic thermoelectric
                    hydrogel. Adv. Sci. 2023, 10, e2302685.  DOI  PubMed  PMC
               87.       Kang, M.; Qu, R.; Sun, X.; et al. Self-powered temperature electronic skin based on island-bridge structure and Bi-Te micro-
                    thermoelectric generator for distributed mini-region sensing. Adv. Mater. 2023, 35, e2309629.  DOI  PubMed
               88.       Guo, X.; Lu, X.; Jiang, P.; Bao, X. Touchless thermosensation enabled by flexible infrared photothermoelectric detector for
                    temperature prewarning function of electronic skin. Adv. Mater. 2024, 36, e2313911.  DOI  PubMed
               89.       Du, C.; Cao, M.; Li, G.; et al. Toward precision recognition of complex hand motions: wearable thermoelectrics by synergistic 2D
                    nanostructure confinement and controlled reduction. Adv. Funct. Mater. 2022, 32, 2206083.  DOI
               90.       Li, N.; Wang, Z.; Yang, X.; et al. Deep-learning-assisted thermogalvanic hydrogel E-skin for self-powered signature recognition and
                    biometric authentication. Adv. Funct. Mater. 2024, 34, 2314419.  DOI
               91.       Ma, X.; Wang, W.; Cui, X.; et al. Machine learning assisted self-powered identity recognition based on thermogalvanic hydrogel for
                    intelligent security. Small 2024, 20, e2402700.  DOI  PubMed
               92.       Tian, C.; Khan, S. A.; Zhang, Z.; Cui, X.; Zhang, H. Thermoelectric hydrogel electronic skin for passive multimodal physiological
                    perception. ACS. Sens. 2024, 9, 840-8.  DOI  PubMed
               93.       Li, Z.; Yin, F.; He, W.; et al. Anti-freezing, recoverable and transparent conductive hydrogels co-reinforced by ethylene glycol as
                    flexible sensors for human motion monitoring. Int. J. Biol. Macromol. 2023, 230, 123117.  DOI  PubMed
               94.       Zhang, X.; Zhao, L. Thermoelectric materials: energy conversion between heat and electricity. J. Materiomics. 2015, 1, 92-105.  DOI
               95.       Nozariasbmarz, A.; Collins, H.; Dsouza, K.; et al. Review of wearable thermoelectric energy harvesting: from body temperature to
                    electronic systems. Appl. Energy. 2020, 258, 114069.  DOI
               96.       Yang, S.; Li, Y.; Deng, L.; et al. Flexible thermoelectric generator and energy management electronics powered by body heat.
                    Microsyst. Nanoeng. 2023, 9, 106.  DOI  PubMed  PMC
               97.       Jin, J.; Hou, Y.; Li, C.; et al. High-performance waterproof flexible thermoelectric generators for self-powered electronics. Nano.
                    Energy. 2024, 132, 110388.  DOI
               98.       He, X.; Gu, J.; Hao, Y.; et al. Continuous manufacture of stretchable and integratable thermoelectric nanofiber yarn for human body
                    energy harvesting and self-powered motion detection. Chem. Eng. J. 2022, 450, 137937.  DOI
               99.       Wang, Z.; Lv, H.; Gao, Z.; Song, H. Stretchable and thermo-mechanical stable ionogels with high thermoelectric properties for
                    respiratory sensing and energy harvesting. Chem. Eng. J. 2024, 498, 155789.  DOI
               100.      He, X.; Li, C.; Zhu, S.; et al. Layer-by-layer self-assembly of durable, breathable and enhanced performance thermoelectric fabrics
                    for collaborative monitoring of human signal. Chem. Eng. J. 2024, 490, 151470.  DOI
               101.      He, X.; Li, B.; Cai, J.; et al. A waterproof, environment-friendly, multifunctional, and stretchable thermoelectric fabric for continuous
                    self-powered personal health signal collection at high humidity. SusMat 2023, 3, 709-20.  DOI
               102.      Zhang, Y.; Wang, H.; Ahmed, K. S.; et al. Deep-learning-assisted thermogalvanic hydrogel fiber sensor for self-powered in-nostril
                    respiratory monitoring. J. Colloid. Interface. Sci. 2025, 678, 143-9.  DOI  PubMed
               103.      Dong, B.; Prakash, V.; Feng, F.; O'neill, Z. A review of smart building sensing system for better indoor environment control. Energy.
                    Build. 2019, 199, 29-46.  DOI
               104.      Narayana, T. L.; Venkatesh, C.; Kiran, A.; et al. Advances in real time smart monitoring of environmental parameters using IoT and
                    sensors. Heliyon 2024, 10, e28195.  DOI  PubMed  PMC
               105.      Wang, J.; Song, Y.; Yu, F.; et al. Ultrastrong, flexible thermogalvanic armor with a Carnot-relative efficiency over 8. Nat. Commun.
                    2024, 15, 6704.  DOI  PubMed  PMC
               106.      Li, X.; Xiao, X.; Bai, C.; et al. Thermogalvanic hydrogels for self-powered temperature monitoring in extreme environments. J.
                    Mater. Chem. C. 2022, 10, 13789-96.  DOI
               107.      He, H.; Qin, Y.; Liu, J.; et al. A wearable self-powered fire warning e-textile enabled by aramid nanofibers/MXene/silver nanowires
                    aerogel fiber for fire protection used in firefighting clothing. Chem. Eng. J. 2023, 460, 141661.  DOI
   104   105   106   107   108   109   110   111   112   113   114