Page 109 - Read Online
P. 109
Page 20 of 21 Tang et al. Soft Sci. 2025, 5, 11 https://dx.doi.org/10.20517/ss.2024.62
2023, 451, 138522. DOI
78. Chugh, V.; Basu, A.; Kaushik, A.; Basu, A. K. E-skin - based advanced wearable technology for health management. Curr. Res.
Biotechnol. 2023, 5, 100129. DOI
79. Chen, J.; Chen, X.; Li, H.; Ma, C.; Yu, P.; Zhang, Y. A large-area less-wires stretchable robot electronic skin. Sens. Actuators. A.
Phys. 2024, 376, 115618. DOI
80. Núñez C, Manjakkal L, Dahiya R. Energy autonomous electronic skin. npj. Flex. Electron. 2019, 3, 45. DOI
81. Yin, L.; Kim, K. N.; Lv, J.; et al. A self-sustainable wearable multi-modular E-textile bioenergy microgrid system. Nat. Commun.
2021, 12, 1542. DOI PubMed PMC
82. Sun, X.; Guo, X.; Gao, J.; et al. E-Skin and its advanced applications in ubiquitous health monitoring. Biomedicines 2024, 12, 2307.
DOI PubMed PMC
83. Jabri, M.; Masoumi, S.; Kandukuri, T. R.; Occhipinti, L. G. Flexible thin-film thermoelectric generators for human skin-heat
harvesting: a numerical study. Nano. Energy. 2024, 129, 110001. DOI
84. Yuan, J.; Zhu, R.; Li, G. Self-powered electronic skin with multisensory functions based on thermoelectric conversion. Adv. Mater.
Technol. 2020, 5, 2000419. DOI
85. Ma, H.; Pu, S.; Wu, H.; et al. Flexible Ag Se thermoelectric films enable the multifunctional thermal perception in electronic skins.
2
ACS. Appl. Mater. Interfaces. 2024, 16, 7453-62. DOI PubMed
86. Han, Y.; Wei, H.; Du, Y.; et al. Ultrasensitive flexible thermal sensor arrays based on high-thermopower ionic thermoelectric
hydrogel. Adv. Sci. 2023, 10, e2302685. DOI PubMed PMC
87. Kang, M.; Qu, R.; Sun, X.; et al. Self-powered temperature electronic skin based on island-bridge structure and Bi-Te micro-
thermoelectric generator for distributed mini-region sensing. Adv. Mater. 2023, 35, e2309629. DOI PubMed
88. Guo, X.; Lu, X.; Jiang, P.; Bao, X. Touchless thermosensation enabled by flexible infrared photothermoelectric detector for
temperature prewarning function of electronic skin. Adv. Mater. 2024, 36, e2313911. DOI PubMed
89. Du, C.; Cao, M.; Li, G.; et al. Toward precision recognition of complex hand motions: wearable thermoelectrics by synergistic 2D
nanostructure confinement and controlled reduction. Adv. Funct. Mater. 2022, 32, 2206083. DOI
90. Li, N.; Wang, Z.; Yang, X.; et al. Deep-learning-assisted thermogalvanic hydrogel E-skin for self-powered signature recognition and
biometric authentication. Adv. Funct. Mater. 2024, 34, 2314419. DOI
91. Ma, X.; Wang, W.; Cui, X.; et al. Machine learning assisted self-powered identity recognition based on thermogalvanic hydrogel for
intelligent security. Small 2024, 20, e2402700. DOI PubMed
92. Tian, C.; Khan, S. A.; Zhang, Z.; Cui, X.; Zhang, H. Thermoelectric hydrogel electronic skin for passive multimodal physiological
perception. ACS. Sens. 2024, 9, 840-8. DOI PubMed
93. Li, Z.; Yin, F.; He, W.; et al. Anti-freezing, recoverable and transparent conductive hydrogels co-reinforced by ethylene glycol as
flexible sensors for human motion monitoring. Int. J. Biol. Macromol. 2023, 230, 123117. DOI PubMed
94. Zhang, X.; Zhao, L. Thermoelectric materials: energy conversion between heat and electricity. J. Materiomics. 2015, 1, 92-105. DOI
95. Nozariasbmarz, A.; Collins, H.; Dsouza, K.; et al. Review of wearable thermoelectric energy harvesting: from body temperature to
electronic systems. Appl. Energy. 2020, 258, 114069. DOI
96. Yang, S.; Li, Y.; Deng, L.; et al. Flexible thermoelectric generator and energy management electronics powered by body heat.
Microsyst. Nanoeng. 2023, 9, 106. DOI PubMed PMC
97. Jin, J.; Hou, Y.; Li, C.; et al. High-performance waterproof flexible thermoelectric generators for self-powered electronics. Nano.
Energy. 2024, 132, 110388. DOI
98. He, X.; Gu, J.; Hao, Y.; et al. Continuous manufacture of stretchable and integratable thermoelectric nanofiber yarn for human body
energy harvesting and self-powered motion detection. Chem. Eng. J. 2022, 450, 137937. DOI
99. Wang, Z.; Lv, H.; Gao, Z.; Song, H. Stretchable and thermo-mechanical stable ionogels with high thermoelectric properties for
respiratory sensing and energy harvesting. Chem. Eng. J. 2024, 498, 155789. DOI
100. He, X.; Li, C.; Zhu, S.; et al. Layer-by-layer self-assembly of durable, breathable and enhanced performance thermoelectric fabrics
for collaborative monitoring of human signal. Chem. Eng. J. 2024, 490, 151470. DOI
101. He, X.; Li, B.; Cai, J.; et al. A waterproof, environment-friendly, multifunctional, and stretchable thermoelectric fabric for continuous
self-powered personal health signal collection at high humidity. SusMat 2023, 3, 709-20. DOI
102. Zhang, Y.; Wang, H.; Ahmed, K. S.; et al. Deep-learning-assisted thermogalvanic hydrogel fiber sensor for self-powered in-nostril
respiratory monitoring. J. Colloid. Interface. Sci. 2025, 678, 143-9. DOI PubMed
103. Dong, B.; Prakash, V.; Feng, F.; O'neill, Z. A review of smart building sensing system for better indoor environment control. Energy.
Build. 2019, 199, 29-46. DOI
104. Narayana, T. L.; Venkatesh, C.; Kiran, A.; et al. Advances in real time smart monitoring of environmental parameters using IoT and
sensors. Heliyon 2024, 10, e28195. DOI PubMed PMC
105. Wang, J.; Song, Y.; Yu, F.; et al. Ultrastrong, flexible thermogalvanic armor with a Carnot-relative efficiency over 8. Nat. Commun.
2024, 15, 6704. DOI PubMed PMC
106. Li, X.; Xiao, X.; Bai, C.; et al. Thermogalvanic hydrogels for self-powered temperature monitoring in extreme environments. J.
Mater. Chem. C. 2022, 10, 13789-96. DOI
107. He, H.; Qin, Y.; Liu, J.; et al. A wearable self-powered fire warning e-textile enabled by aramid nanofibers/MXene/silver nanowires
aerogel fiber for fire protection used in firefighting clothing. Chem. Eng. J. 2023, 460, 141661. DOI

