Page 107 - Read Online
P. 107
Page 18 of 21 Tang et al. Soft Sci. 2025, 5, 11 https://dx.doi.org/10.20517/ss.2024.62
16. Kim Tuoi T, Van Toan N, Ono T. Thermal energy harvester using ambient temperature fluctuations for self-powered wireless IoT
sensing systems: a review. Nano. Energy. 2024, 121, 109186. DOI
17. Chen, P.; Wang, J.; Xue, Y.; et al. From challenge to opportunity: revolutionizing the monitoring of emerging contaminants in water
with advanced sensors. Water. Res. 2024, 265, 122297. DOI PubMed
18. Zhang, J.; Huang, L.; Chen, M.; et al. Highly sensitive self-powered biosensor for real-time monitoring and early warning of human
health and motion state. Nano. Energy. 2024, 131, 110213. DOI
19. Smith, A. A.; Li, R.; Tse, Z. T. H. Reshaping healthcare with wearable biosensors. Sci. Rep. 2023, 13, 4998. DOI PubMed PMC
20. Erdem, A.; Eksin, E.; Senturk, H.; Yildiz, E.; Maral, M. Recent developments in wearable biosensors for healthcare and biomedical
applications. TrAC. Trends. Anal. Chem. 2024, 171, 117510. DOI
21. Kulkarni, M. B.; Rajagopal, S.; Prieto-Simón, B.; Pogue, B. W. Recent advances in smart wearable sensors for continuous human
health monitoring. Talanta 2024, 272, 125817. DOI PubMed
22. Assaad, R. H.; Mohammadi, M.; Poudel, O. Developing an intelligent IoT-enabled wearable multimodal biosensing device and
cloud-based digital dashboard for real-time and comprehensive health, physiological, emotional, and cognitive monitoring using
multi-sensor fusion technologies. Sens. Actuators. A. Phys. 2025, 381, 116074. DOI
23. Wang, J.; Zhu, Y.; Wu, Z.; et al. Wearable multichannel pulse condition monitoring system based on flexible pressure sensor arrays.
Microsyst. Nanoeng. 2022, 8, 16. DOI PubMed PMC
24. Xue, Z.; Gai, Y.; Wu, Y.; liu, Z.; Li, Z. Wearable mechanical and electrochemical sensors for real-time health monitoring. Commun.
Mater. 2024, 5, 658. DOI
25. Ding, Z.; Du, C.; Long, W.; et al. Thermoelectrics and thermocells for fire warning applications. Sci. Bull. 2023, 68, 3261-77. DOI
PubMed
26. Lv, L.; Cao, C.; Qu, Y.; et al. Smart fire-warning materials and sensors: design principle, performances, and applications. Mater. Sci.
Eng. R. Rep. 2022, 150, 100690. DOI
27. Yu, H.; Hu, Z.; He, J.; et al. Flexible temperature-pressure dual sensor based on 3D spiral thermoelectric Bi Te films. Nat. Commun.
2 3
2024, 15, 2521. DOI PubMed PMC
28. Li, J.; Liu, Y.; Wang, Z.; Chen, L.; Cai, K. Ultra-flexible self-supporting Ag Se/nylon composite films for wearable thermoelectric
2
devices. Compos. Part. B. Eng. 2023, 265, 110946. DOI
29. Wu, H.; Shi, X.; Duan, J.; Liu, Q.; Chen, Z. Advances in Ag Se-based thermoelectrics from materials to applications. Energy.
2
Environ. Sci. 2023, 16, 1870-906. DOI
30. Liu, Y.; Zhang, Q.; Huang, A.; et al. Fully inkjet-printed Ag Se flexible thermoelectric devices for sustainable power generation. Nat.
2
Commun. 2024, 15, 2141. DOI PubMed PMC
31. Liu, M.; Zhang, X.; Zhang, S.; Pei, Y. Ag Se as a tougher alternative to n-type Bi Te thermoelectrics. Nat. Commun. 2024, 15, 6580.
2 2 3
DOI PubMed PMC
32. Chen, Y. X.; Shi, X. L.; Zhang, J. Z.; et al. Deviceization of high-performance and flexible Ag Se films for electronic skin and servo
2
rotation angle control. Nat. Commun. 2024, 15, 8356. DOI PubMed PMC
33. Wang, X.; Wang, H.; Liu, B. Carbon nanotube-based organic thermoelectric materials for energy harvesting. Polymers 2018, 10,
1196. DOI PubMed PMC
34. Li, D.; Gong, Y.; Chen, Y.; et al. Recent progress of two-dimensional thermoelectric materials. Nanomicro. Lett. 2020, 12, 36. DOI
PubMed PMC
35. Qian, W.; Jia, S.; Yu, P.; et al. Highly stretchable, low-hysteresis, and antifreeze hydrogel for low-grade thermal energy harvesting in
ionic thermoelectric supercapacitors. Mater. Today. Phys. 2024, 49, 101589. DOI
36. Chen, L.; Rong, X.; Liu, Z.; et al. Negative thermopower anisotropic ionic thermoelectric hydrogels based on synergistic coordination
and hydration for low-grade heat harvesting. Chem. Eng. J. 2024, 481, 148797. DOI
37. Zhu, X.; Yu, Y.; Li, F. A review on thermoelectric energy harvesting from asphalt pavement: configuration, performance and future.
Constr. Build. Mater. 2019, 228, 116818. DOI
38. Beretta, D.; Neophytou, N.; Hodges, J. M.; et al. Thermoelectrics: from history, a window to the future. Mater. Sci. Eng. R. Rep.
2019, 138, 100501. DOI
39. d’Angelo, M.; Galassi, C.; Lecis, N. Thermoelectric materials and applications: a review. Energies 2023, 16, 6409. DOI
40. Zhang, Q.; Deng, K.; Wilkens, L.; Reith, H.; Nielsch, K. Micro-thermoelectric devices. Nat. Electron. 2022, 5, 333-47. DOI
41. Snyder, G. J.; Toberer, E. S. Complex thermoelectric materials. Nat. Mater. 2008, 7, 105-14. DOI PubMed
42. Duan, J.; Yu, B.; Huang, L.; et al. Liquid-state thermocells: opportunities and challenges for low-grade heat harvesting. Joule 2021, 5,
768-79. DOI
43. Zhang, Q.; Song, Q.; Wang, X.; et al. Deep defect level engineering: a strategy of optimizing the carrier concentration for high
thermoelectric performance. Energy. Environ. Sci. 2018, 11, 933-40. DOI
44. Ma, Z.; Wei, J.; Song, P.; et al. Review of experimental approaches for improving zT of thermoelectric materials. Mater. Sci.
Semicond. Process. 2021, 121, 105303. DOI
45. Sun, Y.; Zhu, Y.; Wu, H.; et al. Rational design from materials to devices enables an efficiency of 10.5% based on thermoelectric (Bi,
Sb) Te and Mg (Bi, Sb) for power generation†. Energy. Environ. Sci. 2024, 17, 738-47. DOI
2 3 3 2
46. Lyu, W.; Liu, W.; Li, M.; et al. Efficient stepwise carrier concentration optimization in Ge x ySbyTe†. J. Mater. Chem. C. 2024, 12,
(1+ )-
18004-8. DOI

