Page 107 - Read Online
P. 107

Page 18 of 21                          Tang et al. Soft Sci. 2025, 5, 11  https://dx.doi.org/10.20517/ss.2024.62

               16.       Kim Tuoi T, Van Toan N, Ono T. Thermal energy harvester using ambient temperature fluctuations for self-powered wireless IoT
                    sensing systems: a review. Nano. Energy. 2024, 121, 109186.  DOI
               17.       Chen, P.; Wang, J.; Xue, Y.; et al. From challenge to opportunity: revolutionizing the monitoring of emerging contaminants in water
                    with advanced sensors. Water. Res. 2024, 265, 122297.  DOI  PubMed
               18.       Zhang, J.; Huang, L.; Chen, M.; et al. Highly sensitive self-powered biosensor for real-time monitoring and early warning of human
                    health and motion state. Nano. Energy. 2024, 131, 110213.  DOI
               19.       Smith, A. A.; Li, R.; Tse, Z. T. H. Reshaping healthcare with wearable biosensors. Sci. Rep. 2023, 13, 4998.  DOI  PubMed  PMC
               20.       Erdem, A.; Eksin, E.; Senturk, H.; Yildiz, E.; Maral, M. Recent developments in wearable biosensors for healthcare and biomedical
                    applications. TrAC. Trends. Anal. Chem. 2024, 171, 117510.  DOI
               21.       Kulkarni, M. B.; Rajagopal, S.; Prieto-Simón, B.; Pogue, B. W. Recent advances in smart wearable sensors for continuous human
                    health monitoring. Talanta 2024, 272, 125817.  DOI  PubMed
               22.       Assaad, R. H.; Mohammadi, M.; Poudel, O. Developing an intelligent IoT-enabled wearable multimodal biosensing device and
                    cloud-based digital dashboard for real-time and comprehensive health, physiological, emotional, and cognitive monitoring using
                    multi-sensor fusion technologies. Sens. Actuators. A. Phys. 2025, 381, 116074.  DOI
               23.       Wang, J.; Zhu, Y.; Wu, Z.; et al. Wearable multichannel pulse condition monitoring system based on flexible pressure sensor arrays.
                    Microsyst. Nanoeng. 2022, 8, 16.  DOI  PubMed  PMC
               24.       Xue, Z.; Gai, Y.; Wu, Y.; liu, Z.; Li, Z. Wearable mechanical and electrochemical sensors for real-time health monitoring. Commun.
                    Mater. 2024, 5, 658.  DOI
               25.       Ding, Z.; Du, C.; Long, W.; et al. Thermoelectrics and thermocells for fire warning applications. Sci. Bull. 2023, 68, 3261-77.  DOI
                    PubMed
               26.       Lv, L.; Cao, C.; Qu, Y.; et al. Smart fire-warning materials and sensors: design principle, performances, and applications. Mater. Sci.
                    Eng. R. Rep. 2022, 150, 100690.  DOI
               27.       Yu, H.; Hu, Z.; He, J.; et al. Flexible temperature-pressure dual sensor based on 3D spiral thermoelectric Bi Te  films. Nat. Commun.
                                                                                         2  3
                    2024, 15, 2521.  DOI  PubMed  PMC
               28.       Li, J.; Liu, Y.; Wang, Z.; Chen, L.; Cai, K. Ultra-flexible self-supporting Ag Se/nylon composite films for wearable thermoelectric
                                                                      2
                    devices. Compos. Part. B. Eng. 2023, 265, 110946.  DOI
               29.       Wu, H.; Shi, X.; Duan, J.; Liu, Q.; Chen, Z. Advances in Ag Se-based thermoelectrics from materials to applications. Energy.
                                                             2
                    Environ. Sci. 2023, 16, 1870-906.  DOI
               30.       Liu, Y.; Zhang, Q.; Huang, A.; et al. Fully inkjet-printed Ag Se flexible thermoelectric devices for sustainable power generation. Nat.
                                                           2
                    Commun. 2024, 15, 2141.  DOI  PubMed  PMC
               31.       Liu, M.; Zhang, X.; Zhang, S.; Pei, Y. Ag Se as a tougher alternative to n-type Bi Te  thermoelectrics. Nat. Commun. 2024, 15, 6580.
                                               2                        2  3
                    DOI  PubMed  PMC
               32.       Chen, Y. X.; Shi, X. L.; Zhang, J. Z.; et al. Deviceization of high-performance and flexible Ag Se films for electronic skin and servo
                                                                                 2
                    rotation angle control. Nat. Commun. 2024, 15, 8356.  DOI  PubMed  PMC
               33.       Wang, X.; Wang, H.; Liu, B. Carbon nanotube-based organic thermoelectric materials for energy harvesting. Polymers 2018, 10,
                    1196.  DOI  PubMed  PMC
               34.       Li, D.; Gong, Y.; Chen, Y.; et al. Recent progress of two-dimensional thermoelectric materials. Nanomicro. Lett. 2020, 12, 36.  DOI
                    PubMed  PMC
               35.       Qian, W.; Jia, S.; Yu, P.; et al. Highly stretchable, low-hysteresis, and antifreeze hydrogel for low-grade thermal energy harvesting in
                    ionic thermoelectric supercapacitors. Mater. Today. Phys. 2024, 49, 101589.  DOI
               36.       Chen, L.; Rong, X.; Liu, Z.; et al. Negative thermopower anisotropic ionic thermoelectric hydrogels based on synergistic coordination
                    and hydration for low-grade heat harvesting. Chem. Eng. J. 2024, 481, 148797.  DOI
               37.       Zhu, X.; Yu, Y.; Li, F. A review on thermoelectric energy harvesting from asphalt pavement: configuration, performance and future.
                    Constr. Build. Mater. 2019, 228, 116818.  DOI
               38.       Beretta, D.; Neophytou, N.; Hodges, J. M.; et al. Thermoelectrics: from history, a window to the future. Mater. Sci. Eng. R. Rep.
                    2019, 138, 100501.  DOI
               39.       d’Angelo, M.; Galassi, C.; Lecis, N. Thermoelectric materials and applications: a review. Energies 2023, 16, 6409.  DOI
               40.       Zhang, Q.; Deng, K.; Wilkens, L.; Reith, H.; Nielsch, K. Micro-thermoelectric devices. Nat. Electron. 2022, 5, 333-47.  DOI
               41.       Snyder, G. J.; Toberer, E. S. Complex thermoelectric materials. Nat. Mater. 2008, 7, 105-14.  DOI  PubMed
               42.       Duan, J.; Yu, B.; Huang, L.; et al. Liquid-state thermocells: opportunities and challenges for low-grade heat harvesting. Joule 2021, 5,
                    768-79.  DOI
               43.       Zhang, Q.; Song, Q.; Wang, X.; et al. Deep defect level engineering: a strategy of optimizing the carrier concentration for high
                    thermoelectric performance. Energy. Environ. Sci. 2018, 11, 933-40.  DOI
               44.       Ma, Z.; Wei, J.; Song, P.; et al. Review of experimental approaches for improving zT of thermoelectric materials. Mater. Sci.
                    Semicond. Process. 2021, 121, 105303.  DOI
               45.       Sun, Y.; Zhu, Y.; Wu, H.; et al. Rational design from materials to devices enables an efficiency of 10.5% based on thermoelectric (Bi,
                    Sb) Te  and Mg (Bi, Sb)  for power generation†. Energy. Environ. Sci. 2024, 17, 738-47.  DOI
                      2  3    3     2
               46.       Lyu, W.; Liu, W.; Li, M.; et al. Efficient stepwise carrier concentration optimization in Ge x ySbyTe†. J. Mater. Chem. C. 2024, 12,
                                                                              (1+ )-
                    18004-8.  DOI
   102   103   104   105   106   107   108   109   110   111   112