Page 53 - Read Online
P. 53
Park et al. Soft Sci 2024;4:28 https://dx.doi.org/10.20517/ss.2024.22 Page 27 of 28
166. Abubakar UC, Bansod Y, Forster L, Spallina V, D’agostino C. Conversion of glycerol to acrylic acid: a review of strategies, recent
developments and prospects. React Chem Eng 2023;8:1819-38. DOI
167. Bio-acrylic acid market by type (methyl acrylate, ethyl acrylate, butyl acrylate, elastomers, 2-ethylhexyl acrylate, superabsorbent
polymers), application and tegion (north america, europe, the asia pacific, and the rest of the world.) - global forecast to 2027.
Available from: https://www.marketsandmarkets.com/Market-Reports/bio-acrylic-acid-market-144896040.html. [Last accessed on 26
Jul 2024].
168. Atkinson RL, Monaghan OR, Elsmore MT, et al. RAFT polymerisation of renewable terpene (meth)acrylates and the convergent
synthesis of methacrylate-acrylate-methacrylate triblock copolymers. Polym Chem 2021;12:3177-89. DOI
169. Zhang L, Cao Y, Wang L, Shao L, Bai Y. Polyacrylate emulsion containing IBOMA for removable pressure sensitive adhesives. J
Appl Polym Sci 2016;133:42886. DOI
170. Droesbeke MA, Simula A, Asua JM, Du Prez FE. Biosourced terpenoids for the development of sustainable acrylic pressure-sensitive
adhesives via emulsion polymerisation. Green Chem 2020;22:4561-9. DOI
171. Baek SS, Hwang SH. Preparation of biomass-based transparent pressure sensitive adhesives for optically clear adhesive and their
adhesion performance. Eur Polym J 2017;92:97-104. DOI
172. Baek SS, Jang SH, Hwang SH. Construction and adhesion performance of biomass tetrahydro-geraniol-based sustainable/transparent
pressure sensitive adhesives. J Ind Eng Chem 2017;53:429-34. DOI
173. Badía A, Santos JI, Agirre A, Barandiaran MJ, Leiza JR. UV-tunable biobased pressure-sensitive adhesives containing piperonyl
methacrylate. ACS Sustainable Chem Eng 2019;7:19122-30. DOI
174. Agirre A, Nase J, Degrandi E, Creton C, Asua JM. Improving adhesion of acrylic waterborne PSAs to low surface energy materials:
introduction of stearyl acrylate. J Polym Sci A Polym Chem 2010;48:5030-9. DOI
175. Iso T, Ninomiya T, Kagami S, Kubota K, Sanai Y. Environmentally-friendly UV-curable coatings utilizing bio-based polyester
acrylates. Prog Org Coat 2023;175:107356. DOI
176. Hub L, Koll J, Held M, Radjabian M, Abetz V. Amphiphilic block copolymers via blue-light-induced iniferter RAFT ab initio
emulsion polymerization in water–alcoholic media. Macromolecules 2024;57:2273-86. DOI
177. Lovell PA, Schork FJ. Fundamentals of emulsion polymerization. Biomacromolecules 2020;21:4396-441. DOI PubMed
178. Noppalit S, Simula A, Billon L, Asua JM. On the nitroxide mediated polymerization of methacrylates derived from bio-sourced
terpenes in miniemulsion, a step towards sustainable products. Polym Chem 2020;11:1151-60. DOI
179. Yan Y, Wu J, Wang Y, et al. Strong and UV-responsive plant oil-based ethanol aqueous adhesives fabricated via surfactant-free
RAFT-mediated emulsion polymerization. ACS Sustainable Chem Eng 2021;9:13695-702. DOI
180. Lee Y, Kwon Y, Kim Y, et al. A water-soluble organic photocatalyst discovered for highly efficient additive-free visible-light-driven
grafting of polymers from proteins at ambient and aqueous environments. Adv Mater 2022;34:e2108446. DOI PubMed
181. Niu J, Page ZA, Dolinski ND, et al. Rapid visible light-mediated controlled aqueous polymerization with in situ monitoring. ACS
Macro Lett 2017;6:1109-13. DOI PubMed
182. Chung KY, Page ZA. Boron-methylated dipyrromethene as a green light activated type i photoinitiator for rapid radical
polymerizations. J Am Chem Soc 2023;145:17912-8. DOI PubMed
183. Tucker BS, Coughlin ML, Figg CA, Sumerlin BS. Grafting-from proteins using metal-free PET-RAFT polymerizations under mild
visible-light irradiation. ACS Macro Lett 2017;6:452-7. DOI PubMed
184. Borjigin T, Schmitt M, Giacoletto N, et al. The blue-LED-sensitive naphthoquinone-imidazolyl derivatives as type II photoinitiators
of free radical photopolymerization. Adv Mater Interfaces 2023;10:2202352. DOI
185. Lee Y, Boyer C, Kwon MS. Photocontrolled RAFT polymerization: past, present, and future. Chem Soc Rev 2023;52:3035-97. DOI
PubMed
186. Jeon W, Kwon Y, Kwon MS. Highly efficient dual photoredox/copper catalyzed atom transfer radical polymerization achieved
through mechanism-driven photocatalyst design. Nat Commun 2024;15:5160. DOI PubMed PMC
187. Corrigan N, Yeow J, Judzewitsch P, Xu J, Boyer C. Seeing the light: advancing materials chemistry through photopolymerization.
Angew Chem Int Ed Engl 2019;58:5170-89. DOI PubMed
188. Fors BP, Hawker CJ. Control of a living radical polymerization of methacrylates by light. Angew Chem Int Ed Engl 2012;51:8850-3.
DOI PubMed
189. Singh VK, Yu C, Badgujar S, et al. Highly efficient organic photocatalysts discovered via a computer-aided-design strategy for
visible-light-driven atom transfer radical polymerization. Nat Catal 2018;1:794-804. DOI
190. Kim D, Kim H, Jeon W, et al. Ultraviolet light debondable optically clear adhesives for flexible displays through efficient visible-
light curing. Adv Mater 2024;36:e2309891. DOI PubMed
191. Song Y, He J, Zhang Y, Gilsdorf RA, Chen EYX. Recyclable cyclic bio-based acrylic polymer via pairwise monomer enchainment
by a trifunctional Lewis pair. Nat Chem 2023;15:366-76. DOI PubMed
192. Jehanno C, Alty JW, Roosen M, et al. Critical advances and future opportunities in upcycling commodity polymers. Nature
2022;603:803-14. DOI PubMed
193. Deacy AC, Gregory GL, Sulley GS, Chen TTD, Williams CK. Sequence control from mixtures: switchable polymerization catalysis
and future materials applications. J Am Chem Soc 2021;143:10021-40. DOI PubMed PMC
194. Liu Z, Yan F. Switchable adhesion: on-demand bonding and debonding. Adv Sci 2022;9:e2200264. DOI PubMed PMC
195. Wang ZH, Liu BW, Zeng FR, et al. Fully recyclable multifunctional adhesive with high durability, transparency, flame retardancy,

