Page 50 - Read Online
P. 50
Page 24 of 28 Park et al. Soft Sci 2024;4:28 https://dx.doi.org/10.20517/ss.2024.22
(MARSI). Int J Adhes Adhes 2024;130:103636. DOI
73. Guo H, Zhang W, Jia Z, et al. A biodegradable supramolecular adhesive with robust instant wet adhesion for urgent hemostasis and
wound repair. Adv Funct Mater 2024;34:2401529. DOI
74. Yuan X, Kong W, Xia P, et al. Implantable wet-adhesive flexible electronics with ultrathin gelatin film. Adv Funct Mater
2024:2404824. DOI
75. Zhou Y, Wang L, Liu Y, et al. Transparent, stretchable, self-healing, and self-adhesive ionogels for flexible multifunctional sensors
and encryption systems. Chem Eng J 2024;484:149632. DOI
76. Roslan MF, Shaffiar NM, Khairusshima MKN, Sharifah ISS. Finite element analysis on deformation of stretchable electronic
interconnect substrate using polydimethylsiloxanes (PDMS). IOP Conf Ser Mater Sci Eng 2018;290:012022. DOI
77. Shao Y, Tan X, Novitski R, et al. Uniaxial cell stretching device for live-cell imaging of mechanosensitive cellular functions. Rev Sci
Instrum 2013;84:114304. DOI PubMed PMC
78. Hong JH, Kim S, Lee J, Yoon J, Kim S, Kim Y. 74-1: Invited paper: highly stretchable and shrinkable AMOLED for free
deformation. Symp Digest Tech Papers 2023;54:1041-4. DOI
79. Wang CL, Ho ST, Wang WT, et al. 41-3: Invited paper: high resolution stretchable micro-LED displays. Symp Digest Tech Papers
2022;53:521-3. DOI
80. Sluka T. 42-1: Invited paper: high-resolution light-field AR at comparable computing cost to stereo 3D. Symp Digest Tech Papers
2022;53:526-7. DOI
81. Kang J, Luo H, Tang W, et al. 71-2: Enabling processes and designs for tight-pitch micro-LED based stretchable display. Symp
Digest Tech Papers 2021;52:1056-9. DOI
82. Khang DY, Jiang H, Huang Y, Rogers JA. A stretchable form of single-crystal silicon for high-performance electronics on rubber
substrates. Science 2006;311:208-12. DOI PubMed
83. Dana SF, Nguyen D, Kochhar JS, Liu X, Kang L. UV-curable pressure sensitive adhesive films: effects of biocompatible plasticizers
on mechanical and adhesion properties. Soft Matter 2013;9:6270-81. DOI
84. Roy A, Manna K, Ray PG, Dhara S, Pal S. β-cyclodextrin-based ultrahigh stretchable, flexible, electro- and pressure-responsive,
adhesive, transparent hydrogel as motion sensor. ACS Appl Mater Interfaces 2022;14:17065-80. DOI PubMed
85. Mao J, Zhao C, Liu L, et al. Adhesive, transparent, stretchable, and strain-sensitive hydrogel as flexible strain sensor. Compos
Commun 2021;25:100733. DOI
86. Han GY, Park JY, Lee TH, Yi MB, Kim HJ. Highly resilient dual-crosslinked hydrogel adhesives based on a dopamine-modified
crosslinker. ACS Appl Mater Interfaces 2022;14:36304-14. DOI PubMed
87. Yi M, Lee T, Lee S, Kim J, Kim H. Topologically designed cross-linking network for stretchable and recoverable pressure-sensitive
adhesives with exceptional softness. Mater Today Chem 2022;26:101141. DOI
88. Campbell CJ, Clapper J, Behling RE, et al. P-198: optically clear adhesives enabling foldable and flexible OLED displays. Symp
Digest Tech Papers 2017;48:2009-11. DOI
89. Lee TI, Jo W, Kim W, Kim JH, Paik KW, Kim TS. Direct visualization of cross-sectional strain distribution in flexible devices. ACS
Appl Mater Interfaces 2019;11:13416-22. DOI PubMed
90. Kim W, Lee I, Yoon Kim D, et al. Controlled multiple neutral planes by low elastic modulus adhesive for flexible organic
photovoltaics. Nanotechnology 2017;28:194002. DOI
91. Park Y, Kim J, Ahn D, Yu Y, Lee W, Kwon MS. Biomass-derived optically clear adhesives for foldable displays. ChemSusChem
2024:e202301795. DOI PubMed
92. Lee MH, Jang S, Hwang BH, Kwak T, Kim JJ, Yoon S. 53-1: The foldable display architecture technique depending on the wide
temperature range and the folding curvature. Symp Digest Tech Papers 2022;53:692-5. DOI
93. Gower MD, Shanks RA. Acrylic acid level and adhesive performance and peel master-curves of acrylic pressure-sensitive adhesives.
J Polym Sci B Polym Phys 2006;44:1237-52. DOI
94. Chang EP. Viscoelastic properties of pressure-sensitive adhesives. J Adhes 1997;60:233-48. DOI
95. Tanaka F, Edwards SF. Viscoelastic properties of physically crosslinked networks. 1. Transient network theory. Macromolecules
1992;25:1516-23. DOI
96. Tanaka F, Edwards S. Viscoelastic properties of physically crosslinked networks: Part 2. Dynamic mechanical moduli. J Non-Newton
Fluid Mech 1992;43:273-88. DOI
97. Eckstein A, Suhm J, Friedrich C, et al. Determination of plateau moduli and entanglement molecular weights of isotactic,
syndiotactic, and atactic polypropylenes synthesized with metallocene catalysts. Macromolecules 1998;31:1335-40. DOI
98. Dobrynin AV, Tian Y, Jacobs M, et al. Forensics of polymer networks. Nat Mater 2023;22:1394-400. DOI
99. Malvern Instrument. A basic introduction to rheology. Available from: https://cdn.technologynetworks.com/TN/Resources/PDF/
WP160620BasicIntroRheology.pdf. [Last accessed on 26 Jul 2024].
100. Lee TH, Kim JS, Lee JH, Kim HJ. Pressure-sensitive adhesives for flexible display applications. In: Vargas-Bernal R, He P, Zhang S,
editors. Hybrid nanomaterials - flexible electronics materials. IntechOpen; 2019. DOI
101. Mittal KL. The role of the interface in adhesion phenomena. Polym Eng Sci 1977;17:467-73. DOI
102. Yuk H, Zhang T, Lin S, Parada GA, Zhao X. Tough bonding of hydrogels to diverse non-porous surfaces. Nat Mater 2016;15:190-6.
DOI PubMed PMC
103. Krenceski MA, Johnson JF, Temin SC. Chemical and physical factors affecting performance of pressure-sensitive adhesives. J
Macromol Sci Part C Polym Rev 1986;26:143-82. DOI

