Page 49 - Read Online
P. 49
Park et al. Soft Sci 2024;4:28 https://dx.doi.org/10.20517/ss.2024.22 Page 23 of 28
layers for neutral plane adjustment. United States patent US10334723B2. 2016. Available from: https://patents.google.com/patent/
US10334723B2/en?oq=US10334723B2. [Last accessed on 30 Jul 2024].
42. Jeong K, Kim D, Ahn D, et al. A hyperelastic adhesive forming multiple neutral planes even at extreme temperatures. Chem Eng J
2024;480:148151. DOI
43. Nam J, Lee S, Han M, Lee H. Improved stack structure of rollable display to prevent delamination and permanent deformation. Int J
Precis Eng Manuf 2021;22:671-8. DOI
44. Okumura Y, Ito K. The polyrotaxane gel: a topological gel by figure-of-eight cross-links. Adv Mater 2001;13:485-7. DOI
45. Kato K, Ito K. Dynamic transition between rubber and sliding states attributed to slidable cross-links. Soft Matter 2011;7:8737-40. DOI
46. Fleury G, Schlatter G, Brochon C, et al. Topological polymer networks with sliding cross-link points: the “sliding gels”. relationship
between their molecular structure and the viscoelastic as well as the swelling properties. Macromolecules 2007;40:535-43. DOI
47. Du R, Xu Z, Zhu C, et al. A Highly stretchable and self-healing supramolecular elastomer based on sliding crosslinks and hydrogen
bonds. Adv Funct Mater 2020;30:1907139. DOI
48. Bin Imran A, Esaki K, Gotoh H, et al. Extremely stretchable thermosensitive hydrogels by introducing slide-ring polyrotaxane cross-
linkers and ionic groups into the polymer network. Nat Commun 2014;5:5124. DOI PubMed PMC
49. Yi M, Lee T, Han G, et al. Movable cross-linking in adhesives: superior stretching and adhesion properties via a supramolecular
sliding effect. ACS Appl Polym Mater 2021;3:2678-86. DOI
50. Watabe T, Otsuka H. Enhancing the reactivity of mechanically responsive units via macromolecular design. Macromolecules
2024;57:425-33. DOI
51. Wang S, Hu Y, Kouznetsova TB, et al. Facile mechanochemical cycloreversion of polymer cross-linkers enhances tear resistance.
Science 2023;380:1248-52. DOI
52. Ghanem MA, Basu A, Behrou R, et al. The role of polymer mechanochemistry in responsive materials and additive manufacturing.
Nat Rev Mater 2021;6:84-98. DOI
53. Wang S, Beech HK, Bowser BH, et al. Mechanism dictates mechanics: a molecular substituent effect in the macroscopic fracture of a
covalent polymer network. J Am Chem Soc 2021;143:3714-8. DOI
54. Beech HK, Wang S, Sen D, et al. Reactivity-guided depercolation processes determine fracture behavior in end-linked polymer
networks. ACS Macro Lett 2023;12:1685-91. DOI
55. Zhao C, Gong X, Wang S, Jiang W, Xuan S. Shear stiffening gels for intelligent anti-impact applications. Cell Rep Phys Sci
2020;1:100266. DOI
56. Zhong D, Wu C, Jiang Y, et al. Author correction: high-speed and large-scale intrinsically stretchable integrated circuits. Nature
2024;630:E12. DOI PubMed
57. Chun S, Kim DW, Baik S, et al. Conductive and stretchable adhesive electronics with miniaturized octopus-like suckers against dry/
wet skin for biosignal monitoring. Adv Funct Mater 2018;28:1805224. DOI
58. Ates HC, Nguyen PQ, Gonzalez-Macia L, et al. End-to-end design of wearable sensors. Nat Rev Mater 2022;7:887-907. DOI
PubMed PMC
59. Choi S, Kwon S, Kim H, et al. Highly flexible and efficient fabric-based organic light-emitting devices for clothing-shaped wearable
displays. Sci Rep 2017;7:6424. DOI PubMed PMC
60. Lee S, Kwon JH, Kwon S, Choi KC. A review of flexible OLEDs toward highly durable unusual displays. IEEE Trans Electron
Devices 2017;64:1922-31. DOI
61. Song YJ, Kim JW, Cho HE, et al. Fibertronic organic light-emitting diodes toward fully addressable, environmentally robust,
wearable displays. ACS Nano 2020;14:1133-40. DOI
62. Rogers JA, Someya T, Huang Y. Materials and mechanics for stretchable electronics. Science 2010;327:1603-7. DOI PubMed
63. Sekitani T, Someya T. Stretchable, large-area organic electronics. Adv Mater 2010;22:2228-46. DOI PubMed
64. Kang SH, Jo JW, Lee JM, et al. Full integration of highly stretchable inorganic transistors and circuits within molecular-tailored
elastic substrates on a large scale. Nat Commun 2024;15:2814. DOI PubMed PMC
65. Shi Y, Zhao J, Zhang B, et al. Freestanding serpentine silicon strips with ultrahigh stretchability over 300% for wearable electronics.
Adv Mater 2024;36:e2313603. DOI
66. Wang Y, Han X, Jin L, et al. Excitation threshold reduction techniques for organic semiconductor lasers: a review. Coatings
2023;13:1815. DOI
67. Chen J, Zhang W, Wang L, Yu G. Recent research progress of organic small-molecule semiconductors with high electron mobilities.
Adv Mater 2023;35:2210772. DOI PubMed
68. Jung D, Ju H, Cho S, Lee T, Hong C, Lee J. Multilayer stretchable electronics with designs enabling a compact lateral form. npj Flex
Electron 2024;8:13. DOI
69. Park J, Kim HW, Lim S, et al. Conformal fixation strategies and bioadhesives for soft bioelectronics. Adv Funct Mater
2024;34:2313728. DOI
70. Efstathiou S, Nurumbetov G, Ross A, Li Y, Haddleton DM. Moisture-cured solvent free silylated poly(ether-urea) pressure-sensitive
adhesives (PSAs) for use as skin adhesives for application in transdermal drug delivery (TDD). Mater Adv 2024;5:3396-410. DOI
71. Zheng Y, Wu M, Duan M, et al. Skin temperature-triggered switchable adhesive coatings for wearing comfortable epidermal
electronics. Chem Eng J 2024;488:150459. DOI
72. Fialho L, Albuquerque J, Pinho AS, et al. Exploring innovative adhesive approaches to manage medical adhesive-related skin injuries

