Page 52 - Read Online
P. 52
Page 26 of 28 Park et al. Soft Sci 2024;4:28 https://dx.doi.org/10.20517/ss.2024.22
2011;120:411-8. DOI
137. Sanai Y, Kagami S, Kubota K. Cross-linking photopolymerization of monoacrylate initiated by benzophenone. J Polym Sci Part A
Polym Chem 2018;56:1545-53. DOI
138. Novikov V, Rössler E. Correlation between glass transition temperature and molecular mass in non-polymeric and polymer glass
formers. Polymer 2013;54:6987-91. DOI
139. Hintermeyer J, Herrmann A, Kahlau R, Goiceanu C, Rössler EA. Molecular weight dependence of glassy dynamics in linear
polymers revisited. Macromolecules 2008;41:9335-44. DOI
140. Zhang P, Zhou W, He Y, et al. Stretchable heterogeneous polymer networks of high adhesion and low hysteresis. ACS Appl Mater
Interfaces 2022;14:49264-73. DOI
141. Moon H, Jeong K, Kwak MJ, Choi SQ, Im SG. Solvent-free deposition of ultrathin copolymer films with tunable viscoelasticity for
application to pressure-sensitive adhesives. ACS Appl Mater Interfaces 2018;10:32668-77. DOI
142. Kim J, Hwang J, Baek D, Kim H, Kim Y. Characterization and flexibility properties of UV LED cured acrylic pressure-sensitive
adhesives for flexible displays. J Mater Res Technol 2021;10:1176-83. DOI
143. Kim J, Kim H, Kim Y. Flexibility properties of pressure-sensitive adhesive with different pattern of crosslinking density for
electronic displays. J Mater Res Technol 2021;15:1408-15. DOI
144. Lee J, Kim K, Kim H, Kim Y. Ultraviolet-patterned acrylic pressure-sensitive adhesives for flexible displays. Polymer
2021;237:124324. DOI
145. Back JH, Kim JS, Kim Y, Kim HJ. Heterogeneous acrylic resins with bicontinuous nanodomains as low-modulus flexible adhesives.
Small 2024:e2403497. DOI PubMed
146. Bonnotte T, Paul S, Araque M, Wojcieszak R, Dumeignil F, Katryniok B. Dehydration of lactic acid: the state of the art.
ChemBioEng Rev 2018;5:34-56. DOI
147. Haque FM, Ishibashi JSA, Lidston CAL, et al. Defining the macromolecules of tomorrow through synergistic sustainable polymer
research. Chem Rev 2022;122:6322-73. DOI
148. Gabriel VA, Dubé MA. Toward a fully biobased pressure-sensitive adhesive. Ind Eng Chem Res 2023;62:478-88. DOI
149. Droesbeke MA, Aksakal R, Simula A, Asua JM, Du Prez FE. Biobased acrylic pressure-sensitive adhesives. Prog Polym Sci
2021;117:101396. DOI
150. Chen TTD, Carrodeguas LP, Sulley GS, Gregory GL, Williams CK. Bio-based and degradable block polyester pressure-sensitive
adhesives. Angew Chem Int Ed Engl 2020;132:23656-61. DOI PubMed PMC
151. Albanese KR, Okayama Y, Morris PT, et al. Building tunable degradation into high-performance poly(acrylate) pressure-sensitive
adhesives. ACS Macro Lett 2023;12:787-93. DOI
152. Machado TO, Stubbs CJ, Chiaradia V, et al. A renewably sourced, circular photopolymer resin for additive manufacturing. Nature
2024;629:1069-74. DOI PubMed PMC
153. Castagnet T, Aguirre G, Asua JM, Billon L. Bioinspired enzymatic synthesis of terpenoid-based (meth)acrylic monomers: a solvent-,
metal-, amino-, and halogen-free approach. ACS Sustainable Chem Eng 2020;8:7503-12. DOI
154. Hermens JGH, Jensma A, Feringa BL. Highly efficient biobased synthesis of acrylic acid. Angew Chem Int Ed Engl
2022;61:e202112618. DOI PubMed PMC
155. Droesbeke MA, Du Prez FE. Sustainable synthesis of renewable terpenoid-based (meth)acrylates using the CHEM21 green metrics
toolkit. ACS Sustainable Chem Eng 2019;7:11633-9. DOI
156. Obermeier F, Hense D, Stockmann PN, Strube OI. Syntheses and polymerization of monoterpene-based (meth)acrylates: IBO(M)A
as a relevant monomer for industrial applications. Green Chem 2024;26:4387-416. DOI
157. Jarach N, Dodiuk H. Debondable, recyclable and/or biodegradable naturally-based adhesives. In: Dunky M, Mittal K, editors.
Biobased adhesives. Wiley; 2023. pp. 427-61. DOI
158. Veith C, Diot-néant F, Miller SA, Allais F. Synthesis and polymerization of bio-based acrylates: a review. Polym Chem
2020;11:7452-70. DOI
159. Nasiri M, Saxon DJ, Reineke TM. Enhanced mechanical and adhesion properties in sustainable triblock copolymers via non-covalent
interactions. Macromolecules 2018;51:2456-65. DOI
160. Badía A, Agirre A, Barandiaran MJ, Leiza JR. Removable biobased waterborne pressure-sensitive adhesives containing mixtures of
isosorbide methacrylate monomers. Biomacromolecules 2020;21:4522-31. DOI PubMed
161. Gallagher JJ, Hillmyer MA, Reineke TM. Acrylic triblock copolymers incorporating isosorbide for pressure sensitive adhesives. ACS
Sustainable Chem Eng 2016;4:3379-87. DOI
162. Heo J, Kang T, Jang SG, et al. Improved performance of protected catecholic polysiloxanes for bioinspired wet adhesion to surface
oxides. J Am Chem Soc 2012;134:20139-45. DOI PubMed PMC
163. Li Y, Sun XS. Synthesis and characterization of acrylic polyols and polymers from soybean oils for pressure-sensitive adhesives. RSC
Adv 2015;5:44009-17. DOI
164. Fouilloux H, Qiang W, Robert C, Placet V, Thomas CM. Multicatalytic transformation of (meth)acrylic acids: a one-pot approach to
biobased poly(meth)acrylates. Angew Chem Int Ed Engl 2021;60:19374-82. DOI PubMed
165. Abraham TW, Allen E, Hahn JJ, Tsobanakis P, Bohnert EC, Frank CL, inventors; Cargill Inc., assignee. Recovery of 3-
hydroxypropionic acid. United States patent US10442748B2. 2019. Available from: https://patents.google.com/patent/
US10442748B2/en?oq=US10442748B2. [Last accessed on 30 Jul 2024].

