Page 52 - Read Online
P. 52

Page 26 of 28                            Park et al. Soft Sci 2024;4:28  https://dx.doi.org/10.20517/ss.2024.22

                    2011;120:411-8.  DOI
               137.      Sanai Y, Kagami S, Kubota K. Cross-linking photopolymerization of monoacrylate initiated by benzophenone. J Polym Sci Part A
                    Polym Chem 2018;56:1545-53.  DOI
               138.      Novikov V, Rössler E. Correlation between glass transition temperature and molecular mass in non-polymeric and polymer glass
                    formers. Polymer 2013;54:6987-91.  DOI
               139.      Hintermeyer J, Herrmann A, Kahlau R, Goiceanu C, Rössler EA. Molecular weight dependence of glassy dynamics in linear
                    polymers revisited. Macromolecules 2008;41:9335-44.  DOI
               140.      Zhang P, Zhou W, He Y, et al. Stretchable heterogeneous polymer networks of high adhesion and low hysteresis. ACS Appl Mater
                    Interfaces 2022;14:49264-73.  DOI
               141.      Moon H, Jeong K, Kwak MJ, Choi SQ, Im SG. Solvent-free deposition of ultrathin copolymer films with tunable viscoelasticity for
                    application to pressure-sensitive adhesives. ACS Appl Mater Interfaces 2018;10:32668-77.  DOI
               142.      Kim J, Hwang J, Baek D, Kim H, Kim Y. Characterization and flexibility properties of UV LED cured acrylic pressure-sensitive
                    adhesives for flexible displays. J Mater Res Technol 2021;10:1176-83.  DOI
               143.      Kim J, Kim H, Kim Y. Flexibility properties of pressure-sensitive adhesive with different pattern of crosslinking density for
                    electronic displays. J Mater Res Technol 2021;15:1408-15.  DOI
               144.      Lee  J,  Kim  K,  Kim  H,  Kim  Y.  Ultraviolet-patterned  acrylic  pressure-sensitive  adhesives  for  flexible  displays.  Polymer
                    2021;237:124324.  DOI
               145.      Back JH, Kim JS, Kim Y, Kim HJ. Heterogeneous acrylic resins with bicontinuous nanodomains as low-modulus flexible adhesives.
                    Small 2024:e2403497.  DOI  PubMed
               146.      Bonnotte T, Paul S, Araque M, Wojcieszak R, Dumeignil F, Katryniok B. Dehydration of lactic acid: the state of the art.
                    ChemBioEng Rev 2018;5:34-56.  DOI
               147.      Haque FM, Ishibashi JSA, Lidston CAL, et al. Defining the macromolecules of tomorrow through synergistic sustainable polymer
                    research. Chem Rev 2022;122:6322-73.  DOI
               148.      Gabriel VA, Dubé MA. Toward a fully biobased pressure-sensitive adhesive. Ind Eng Chem Res 2023;62:478-88.  DOI
               149.      Droesbeke MA, Aksakal R, Simula A, Asua JM, Du Prez FE. Biobased acrylic pressure-sensitive adhesives. Prog Polym Sci
                    2021;117:101396.  DOI
               150.      Chen TTD, Carrodeguas LP, Sulley GS, Gregory GL, Williams CK. Bio-based and degradable block polyester pressure-sensitive
                    adhesives. Angew Chem Int Ed Engl 2020;132:23656-61.  DOI  PubMed  PMC
               151.      Albanese KR, Okayama Y, Morris PT, et al. Building tunable degradation into high-performance poly(acrylate) pressure-sensitive
                    adhesives. ACS Macro Lett 2023;12:787-93.  DOI
               152.      Machado TO, Stubbs CJ, Chiaradia V, et al. A renewably sourced, circular photopolymer resin for additive manufacturing. Nature
                    2024;629:1069-74.  DOI  PubMed  PMC
               153.      Castagnet T, Aguirre G, Asua JM, Billon L. Bioinspired enzymatic synthesis of terpenoid-based (meth)acrylic monomers: a solvent-,
                    metal-, amino-, and halogen-free approach. ACS Sustainable Chem Eng 2020;8:7503-12.  DOI
               154.      Hermens  JGH,  Jensma  A,  Feringa  BL.  Highly  efficient  biobased  synthesis  of  acrylic  acid.  Angew  Chem  Int  Ed  Engl
                    2022;61:e202112618.  DOI  PubMed  PMC
               155.      Droesbeke MA, Du Prez FE. Sustainable synthesis of renewable terpenoid-based (meth)acrylates using the CHEM21 green metrics
                    toolkit. ACS Sustainable Chem Eng 2019;7:11633-9.  DOI
               156.      Obermeier F, Hense D, Stockmann PN, Strube OI. Syntheses and polymerization of monoterpene-based (meth)acrylates: IBO(M)A
                    as a relevant monomer for industrial applications. Green Chem 2024;26:4387-416.  DOI
               157.      Jarach N, Dodiuk H. Debondable, recyclable and/or biodegradable naturally-based adhesives. In: Dunky M, Mittal K, editors.
                    Biobased adhesives. Wiley; 2023. pp. 427-61.  DOI
               158.      Veith C, Diot-néant F, Miller SA, Allais F. Synthesis and polymerization of bio-based acrylates: a review.  Polym Chem
                    2020;11:7452-70.  DOI
               159.      Nasiri M, Saxon DJ, Reineke TM. Enhanced mechanical and adhesion properties in sustainable triblock copolymers via non-covalent
                    interactions. Macromolecules 2018;51:2456-65.  DOI
               160.      Badía A, Agirre A, Barandiaran MJ, Leiza JR. Removable biobased waterborne pressure-sensitive adhesives containing mixtures of
                    isosorbide methacrylate monomers. Biomacromolecules 2020;21:4522-31.  DOI  PubMed
               161.      Gallagher JJ, Hillmyer MA, Reineke TM. Acrylic triblock copolymers incorporating isosorbide for pressure sensitive adhesives. ACS
                    Sustainable Chem Eng 2016;4:3379-87.  DOI
               162.      Heo J, Kang T, Jang SG, et al. Improved performance of protected catecholic polysiloxanes for bioinspired wet adhesion to surface
                    oxides. J Am Chem Soc 2012;134:20139-45.  DOI  PubMed  PMC
               163.      Li Y, Sun XS. Synthesis and characterization of acrylic polyols and polymers from soybean oils for pressure-sensitive adhesives. RSC
                    Adv 2015;5:44009-17.  DOI
               164.      Fouilloux H, Qiang W, Robert C, Placet V, Thomas CM. Multicatalytic transformation of (meth)acrylic acids: a one-pot approach to
                    biobased poly(meth)acrylates. Angew Chem Int Ed Engl 2021;60:19374-82.  DOI  PubMed
               165.      Abraham TW, Allen E, Hahn JJ, Tsobanakis P, Bohnert EC, Frank CL, inventors; Cargill Inc., assignee. Recovery of 3-
                    hydroxypropionic  acid.  United  States  patent  US10442748B2.  2019.  Available  from:  https://patents.google.com/patent/
                    US10442748B2/en?oq=US10442748B2. [Last accessed on 30 Jul 2024].
   47   48   49   50   51   52   53   54   55   56   57