Page 59 - Read Online
P. 59

Page 8 of 10                             Zhu et al. Soft Sci 2024;4:21  https://dx.doi.org/10.20517/ss.2024.01

               DECLARATIONS
               Authors’ contributions
               Conceived the topic and supervised the research: Xu X
               Wrote, discussed, and revised the manuscript: Zhu Y, Xu X


               Availability of data and materials
               Not applicable.

               Financial support and sponsorship
               The authors acknowledge support from the Ministry of Science and Technology of the People’s Republic of
               China (Nos. 2023YFE0101400 & 2022YFA1205300), National Natural Science Foundation of China (No.
               52273249), Natural Science Foundation of Guangdong Province (Nos. 2021A1515010493 & 2021ZT09L197),
               Shenzhen  Science  and  Technology  Innovation  Commission  (Nos.  RCYX20210609103710028,
               WDZC20200818092033001, and KQTD20210811090112002), and Shenzhen Geim Graphene Center.


               Conflicts of interest
               Both authors declared that there are no conflicts of interest.


               Ethical approval and consent to participate
               Not applicable.


               Consent for publication
               Not applicable.


               Copyright
               © The Author(s) 2024.


               REFERENCES
               1.       Schaap J, Pennartz CM, Meijer JH. Electrophysiology of the circadian pacemaker in mammals. Chronobiol Int 2003;20:171-88.  DOI
                   PubMed
               2.       Watanabe M, Rollins AM, Polo-Parada L, Ma P, Gu S, Jenkins MW. Probing the electrophysiology of the developing heart. J
                   Cardiovasc Dev Dis 2016;3:10.  DOI  PubMed  PMC
               3.       Bean BP. The action potential in mammalian central neurons. Nat Rev Neurosci 2007;8:451-65.  DOI  PubMed
               4.       Gupta P, Balasubramaniam N, Chang HY, Tseng FG, Santra TS. A single-neuron: current trends and future prospects. Cells
                   2020;9:1528.  DOI  PubMed  PMC
               5.       Janse MJ. Electrophysiological changes in heart failure and their relationship to arrhythmogenesis. Cardiovasc Res 2004;61:208-17.
                   DOI  PubMed
               6.       Collins KK. The spectrum of long-term electrophysiologic abnormalities in patients with univentricular hearts. Congenit Heart Dis
                   2009;4:310-7.  DOI  PubMed
               7.       Freed JK, Gutterman DD. Communication is key: mechanisms of intercellular signaling in vasodilation. J Cardiovasc Pharmacol
                   2017;69:264-72.  DOI  PubMed  PMC
               8.       Hogenesch JB, Herzog ED. Intracellular and intercellular processes determine robustness of the circadian clock. FEBS Lett
                   2011;585:1427-34.  DOI  PubMed  PMC
               9.       Birbaumer N. Breaking the silence: brain-computer interfaces (BCI) for communication and motor control. Psychophysiology
                   2006;43:517-32.  DOI  PubMed
               10.      Feldmann LK, Lofredi R, Neumann WJ, et al. Toward therapeutic electrophysiology: beta-band suppression as a biomarker in chronic
                   local field potential recordings. NPJ Parkinsons Dis 2022;8:44.  DOI  PubMed  PMC
               11.      Lou Z, Tao J, Wei B, et al. Near-infrared organic photodetectors toward skin-integrated photoplethysmography-electrocardiography
                   multimodal sensing system. Adv Sci 2023;10:e2304174.  DOI  PubMed  PMC
               12.      Arquilla K, Webb AK, Anderson AP. Textile electrocardiogram (ECG) electrodes for wearable health monitoring. Sensors
                   2020;20:1013.  DOI  PubMed  PMC
               13.      Wei B, Wang Z, Guo H, et al. Ultraflexible tattoo electrodes for epidermal and in vivo electrophysiological recording. Cell Rep Phys
                   Sci 2023;4:101335.  DOI
   54   55   56   57   58   59   60   61   62   63   64