Page 60 - Read Online
P. 60

Zhu et al. Soft Sci 2024;4:21  https://dx.doi.org/10.20517/ss.2024.01            Page 9 of 10

               14.      Krachunov S, Casson AJ. 3D printed dry EEG electrodes. Sensors 2016;16:1635.  DOI  PubMed  PMC
               15.      Bartolomei F, Lagarde S, Wendling F, et al. Defining epileptogenic networks: contribution of SEEG and signal analysis. Epilepsia
                   2017;58:1131-47.  DOI  PubMed
               16.      Hu J, Hossain RF, Navabi ZS, et al. Fully desktop fabricated flexible graphene electrocorticography (ECoG) arrays. J Neural Eng
                   2022;20:016019.  DOI  PubMed  PMC
               17.      Alahi MEE, Liu Y, Xu Z, Wang H, Wu T, Mukhopadhyay SC. Recent advancement of electrocorticography (ECoG) electrodes for
                   chronic neural recording/stimulation. Mater Today Commun 2021;29:102853.  DOI
               18.      Zhu M, Wang H, Li S, et al. Flexible electrodes for in vivo and in vitro electrophysiological signal recording. Adv Healthc Mater
                   2021;10:e2100646.  DOI  PubMed
               19.      Tonekabony Shad E, Molinas M, Ytterdal T. Impedance and noise of passive and active dry EEG electrodes: a review. IEEE Sensors J
                   2020;20:14565-77.  DOI
               20.      Xu W, Wang J, Cheng S, Xu X. Flexible organic transistors for neural activity recording. Appl Phys Rev 2022;9:031308.  DOI
               21.      Schaefer N, Garcia-cortadella R, Martínez-aguilar J, et al. Multiplexed neural sensor array of graphene solution-gated field-effect
                   transistors. 2D Mater 2020;7:025046.  DOI
               22.      Rashid RB, Ji X, Rivnay J. Organic electrochemical transistors in bioelectronic circuits. Biosens Bioelectron 2021;190:113461.  DOI
                   PubMed
               23.      Donahue MJ, Williamson A, Strakosas X, et al. High-performance vertical organic electrochemical transistors. Adv Mater
                   2018;30:1705031.  DOI  PubMed
               24.      Keene ST, Fogarty D, Cooke R, Casadevall CD, Salleo A, Parlak O. Wearable organic electrochemical transistor patch for multiplexed
                   sensing of calcium and ammonium ions from human perspiration. Adv Healthc Mater 2019;8:e1901321.  DOI  PubMed
               25.      Zhong Y, Saleh A, Inal S. Decoding electrophysiological signals with organic electrochemical transistors. Macromol Biosci
                   2021;21:e2100187.  DOI  PubMed
               26.      Rivnay J, Inal S, Salleo A, Owens RM, Berggren M, Malliaras GG. Organic electrochemical transistors. Nat Rev Mater 2018;3:17086.
                   DOI
               27.      Li T, Cheryl Koh JY, Moudgil A, et al. Biocompatible ionic liquids in high-performing organic electrochemical transistors for ion
                   detection and electrophysiological monitoring. ACS Nano 2022;16:12049-60.  DOI
               28.      Leleux P, Rivnay J, Lonjaret T, et al. Organic electrochemical transistors for clinical applications. Adv Healthc Mater 2015;4:142-7.
                   DOI
               29.      Khodagholy D, Doublet T, Quilichini P, et al. In vivo recordings of brain activity using organic transistors. Nat Commun 2013;4:1575.
                   DOI  PubMed  PMC
               30.      Wang W, Jiang Y, Zhong D, et al. Neuromorphic sensorimotor loop embodied by monolithically integrated, low-voltage, soft e-skin.
                   Science 2023;380:735-42.  DOI
               31.      Wu M, Yao K, Huang N, et al. Ultrathin, soft, bioresorbable organic electrochemical transistors for transient spatiotemporal mapping
                   of brain activity. Adv Sci 2023;10:e2300504.  DOI  PubMed  PMC
               32.      Park S, Heo SW, Lee W, et al. Self-powered ultra-flexible electronics via nano-grating-patterned organic photovoltaics. Nature
                   2018;561:516-21.  DOI
               33.      Lee H, Lee S, Lee W, Yokota T, Fukuda K, Someya T. Ultrathin organic electrochemical transistor with nonvolatile and thin gel
                   electrolyte for long-term electrophysiological monitoring. Adv Funct Mater 2019;29:1906982.  DOI
               34.      Wu X, Stephen M, Hidalgo TC, et al. Ionic-liquid induced morphology tuning of PEDOT:PSS for high-performance organic
                   electrochemical transistors. Adv Funct Mater 2022;32:2108510.  DOI
               35.      Jeong SY, Moon JW, Lee S, et al. Ion gel-gated quasi-solid-state vertical organic electrochemical transistor and inverter. Adv Elect
                   Mater 2023;9:2300053.  DOI
               36.      Yang A, Song J, Liu H, Zhao Z, Li L, Yan F. Wearable organic electrochemical transistor array for skin-surface electrocardiogram
                   mapping above a human heart. Adv Funct Mater 2023;33:2215037.  DOI
               37.      Nguyen-dang T, Harrison K, Lill A, et al. Biomaterial-based solid-electrolyte organic electrochemical transistors for electronic and
                   neuromorphic applications. Adv Elect Mater 2021;7:2100519.  DOI
                                                  +
               38.      del Agua I, Porcarelli L, Curto VF, et al. A Na  conducting hydrogel for protection of organic electrochemical transistors. J Mater
                   Chem B 2018;6:2901-6.  DOI
               39.      Jo YJ, Kim H, Ok J, et al. Biocompatible and biodegradable organic transistors using a solid-state electrolyte incorporated with
                   choline-based ionic liquid and polysaccharide. Adv Funct Mater 2020;30:1909707.  DOI
               40.      Wang W, Li Z, Li M, et al. High-transconductance, highly elastic, durable and recyclable all-polymer electrochemical transistors with
                   3D micro-engineered interfaces. Nanomicro Lett 2022;14:184.  DOI
               41.      Wang J, Lee S, Yokota T, Someya T. Gas-permeable organic electrochemical transistor embedded with a porous solid-state polymer
                   electrolyte as an on-skin active electrode for electrophysiological signal acquisition. Adv Funct Mater 2022;32:2200458.  DOI
               42.      Cheng S, Lou Z, Zhang L, et al. Ultrathin hydrogel films toward breathable skin-integrated electronics. Adv Mater 2023;35:e2206793.
                   DOI  PubMed
               43.      Bernards D, Malliaras G. Steady-state and transient behavior of organic electrochemical transistors. Adv Funct Mater 2007;17:3538-
                   44.  DOI
               44.      Sun H, Vagin M, Wang S, et al. Complementary logic circuits based on high-performance n-type organic electrochemical transistors.
   55   56   57   58   59   60   61   62   63   64   65