Page 60 - Read Online
P. 60
Zhu et al. Soft Sci 2024;4:21 https://dx.doi.org/10.20517/ss.2024.01 Page 9 of 10
14. Krachunov S, Casson AJ. 3D printed dry EEG electrodes. Sensors 2016;16:1635. DOI PubMed PMC
15. Bartolomei F, Lagarde S, Wendling F, et al. Defining epileptogenic networks: contribution of SEEG and signal analysis. Epilepsia
2017;58:1131-47. DOI PubMed
16. Hu J, Hossain RF, Navabi ZS, et al. Fully desktop fabricated flexible graphene electrocorticography (ECoG) arrays. J Neural Eng
2022;20:016019. DOI PubMed PMC
17. Alahi MEE, Liu Y, Xu Z, Wang H, Wu T, Mukhopadhyay SC. Recent advancement of electrocorticography (ECoG) electrodes for
chronic neural recording/stimulation. Mater Today Commun 2021;29:102853. DOI
18. Zhu M, Wang H, Li S, et al. Flexible electrodes for in vivo and in vitro electrophysiological signal recording. Adv Healthc Mater
2021;10:e2100646. DOI PubMed
19. Tonekabony Shad E, Molinas M, Ytterdal T. Impedance and noise of passive and active dry EEG electrodes: a review. IEEE Sensors J
2020;20:14565-77. DOI
20. Xu W, Wang J, Cheng S, Xu X. Flexible organic transistors for neural activity recording. Appl Phys Rev 2022;9:031308. DOI
21. Schaefer N, Garcia-cortadella R, Martínez-aguilar J, et al. Multiplexed neural sensor array of graphene solution-gated field-effect
transistors. 2D Mater 2020;7:025046. DOI
22. Rashid RB, Ji X, Rivnay J. Organic electrochemical transistors in bioelectronic circuits. Biosens Bioelectron 2021;190:113461. DOI
PubMed
23. Donahue MJ, Williamson A, Strakosas X, et al. High-performance vertical organic electrochemical transistors. Adv Mater
2018;30:1705031. DOI PubMed
24. Keene ST, Fogarty D, Cooke R, Casadevall CD, Salleo A, Parlak O. Wearable organic electrochemical transistor patch for multiplexed
sensing of calcium and ammonium ions from human perspiration. Adv Healthc Mater 2019;8:e1901321. DOI PubMed
25. Zhong Y, Saleh A, Inal S. Decoding electrophysiological signals with organic electrochemical transistors. Macromol Biosci
2021;21:e2100187. DOI PubMed
26. Rivnay J, Inal S, Salleo A, Owens RM, Berggren M, Malliaras GG. Organic electrochemical transistors. Nat Rev Mater 2018;3:17086.
DOI
27. Li T, Cheryl Koh JY, Moudgil A, et al. Biocompatible ionic liquids in high-performing organic electrochemical transistors for ion
detection and electrophysiological monitoring. ACS Nano 2022;16:12049-60. DOI
28. Leleux P, Rivnay J, Lonjaret T, et al. Organic electrochemical transistors for clinical applications. Adv Healthc Mater 2015;4:142-7.
DOI
29. Khodagholy D, Doublet T, Quilichini P, et al. In vivo recordings of brain activity using organic transistors. Nat Commun 2013;4:1575.
DOI PubMed PMC
30. Wang W, Jiang Y, Zhong D, et al. Neuromorphic sensorimotor loop embodied by monolithically integrated, low-voltage, soft e-skin.
Science 2023;380:735-42. DOI
31. Wu M, Yao K, Huang N, et al. Ultrathin, soft, bioresorbable organic electrochemical transistors for transient spatiotemporal mapping
of brain activity. Adv Sci 2023;10:e2300504. DOI PubMed PMC
32. Park S, Heo SW, Lee W, et al. Self-powered ultra-flexible electronics via nano-grating-patterned organic photovoltaics. Nature
2018;561:516-21. DOI
33. Lee H, Lee S, Lee W, Yokota T, Fukuda K, Someya T. Ultrathin organic electrochemical transistor with nonvolatile and thin gel
electrolyte for long-term electrophysiological monitoring. Adv Funct Mater 2019;29:1906982. DOI
34. Wu X, Stephen M, Hidalgo TC, et al. Ionic-liquid induced morphology tuning of PEDOT:PSS for high-performance organic
electrochemical transistors. Adv Funct Mater 2022;32:2108510. DOI
35. Jeong SY, Moon JW, Lee S, et al. Ion gel-gated quasi-solid-state vertical organic electrochemical transistor and inverter. Adv Elect
Mater 2023;9:2300053. DOI
36. Yang A, Song J, Liu H, Zhao Z, Li L, Yan F. Wearable organic electrochemical transistor array for skin-surface electrocardiogram
mapping above a human heart. Adv Funct Mater 2023;33:2215037. DOI
37. Nguyen-dang T, Harrison K, Lill A, et al. Biomaterial-based solid-electrolyte organic electrochemical transistors for electronic and
neuromorphic applications. Adv Elect Mater 2021;7:2100519. DOI
+
38. del Agua I, Porcarelli L, Curto VF, et al. A Na conducting hydrogel for protection of organic electrochemical transistors. J Mater
Chem B 2018;6:2901-6. DOI
39. Jo YJ, Kim H, Ok J, et al. Biocompatible and biodegradable organic transistors using a solid-state electrolyte incorporated with
choline-based ionic liquid and polysaccharide. Adv Funct Mater 2020;30:1909707. DOI
40. Wang W, Li Z, Li M, et al. High-transconductance, highly elastic, durable and recyclable all-polymer electrochemical transistors with
3D micro-engineered interfaces. Nanomicro Lett 2022;14:184. DOI
41. Wang J, Lee S, Yokota T, Someya T. Gas-permeable organic electrochemical transistor embedded with a porous solid-state polymer
electrolyte as an on-skin active electrode for electrophysiological signal acquisition. Adv Funct Mater 2022;32:2200458. DOI
42. Cheng S, Lou Z, Zhang L, et al. Ultrathin hydrogel films toward breathable skin-integrated electronics. Adv Mater 2023;35:e2206793.
DOI PubMed
43. Bernards D, Malliaras G. Steady-state and transient behavior of organic electrochemical transistors. Adv Funct Mater 2007;17:3538-
44. DOI
44. Sun H, Vagin M, Wang S, et al. Complementary logic circuits based on high-performance n-type organic electrochemical transistors.

