Page 43 - Read Online
P. 43
Blewitt et al. Soft Sci 2024;4:13 https://dx.doi.org/10.20517/ss.2023.49 Page 25 of 26
45. Shen YZ, Lin GC, Tan HF. A method for predicting the blasting pressure of balloons using the surface strain in low pressure. Adv
Mech Eng 2019;11:1-8. DOI
46. Tang C, Du B, Jiang S, et al. A pipeline inspection robot for navigating tubular environments in the sub-centimeter scale. Sci Robot
2022:7;66. DOI
47. Jiang C, Pei Z. An in-pipe worm robot with pneumatic actuators based on origami paper-fabric composites. Text Res J 2021:91;2724-
37. DOI
48. Takahashi M, Hayashi I, Iwatsuki N, Suzumori K, Ohki N. The development of an in-pipe microrobot applying the motion of an
earthworm. In: 1994 5th International Symposium on Micro Machine and Human Science Proceedings; 1994 Oct 02-04; Nagoya,
Japan. IEEE; 1994. pp. 35. DOI
49. Verma MS, Ainla A, Yang D, Harburg D, Whitesides GM. A soft tube-climbing robot. Soft Robot 2018;5:133-7. DOI
50. Hu ZJ, Cheneler D. Bio-inspired soft robot for locomotion and navigation in restricted spaces. J Robot Automat 2021;5:236-50. DOI
51. Daerden F, Lefeber D, Verrelst B, Van Ham R. Pleated pneumatic artificial muscles: actuators for automation and robotics. In: 2001
IEEE/ASME International Conference on Advanced Intelligent Mechatronics. Proceedings (Cat. No.01TH8556); 2001 Jul 08-12;
Como, Italy. IEEE; 2001. pp. 738-43. DOI
52. Kalita B, Leonessa A, Dwivedy SK. A review on the development of pneumatic artificial muscle actuators: force model and
application. Actuators 2022;11:288. DOI
53. Serres JL, Reynolds DB, Phillips CA, Rogers DB, Repperger DW. Characterization of a pneumatic muscle test station with two
dynamic plants in cascade. Comput Method Biomec 2010;13:11-8. DOI
54. Serres JL, Reynolds DB, Phillips CA, Gerschutz MJ, Repperger DW. Characterisation of a phenomenological model for commercial
pneumatic muscle actuators. Comput Method Biomec 2009;12:423-30. DOI
55. Zhang Z, Wang X, Wang S, Meng D, Liang B. Design and modelling of a parallel-pipe-crawling pneumatic soft robot. IEEE Access
2019;7:134301-17. DOI
56. Wickramatunge KC, Leephakpreeda T. Empirical modeling of pneumatic artificial muscle. In: Proceedings of the International
MultiConference of Engineers and Computer Scientists 2009 Vol II; 2009 Mar 08-20; Hong Kong, China. IMECS 2009. Available
from: https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=fe4608d1e7162cbd52ed47534fccb29668b9f768. [Last
accessed on 5 Mar 2024].
57. Wickramatunge KC, Leephakpreeda T. Study on mechanical behaviors of pneumatic artificial muscle. Int J Eng Sci 2010;48:188-98.
DOI
58. Yamamoto T, Sakama S, Kamimura A. Pneumatic duplex-chambered inchworm mechanism for narrow pipes driven by only two air
supply lines. IEEE Robot Autom Lett 2020;5:5034-42. DOI
59. Lim J, Park H, An J, Hong YS, Kim B, Yi BJ. One pneumatic line based inchworm-like micro robot for half-inch pipe inspection.
Mechatronics 2008;18:315-22. DOI
60. Gilbertson MD, McDonald G, Korinek G, Van de Ven JD, Kowalewski TM. Serially actuated locomotion for soft robots in tube-like
environments. IEEE Robot Autom Lett 2017;2:1140-7. DOI
61. Ko UH, Kumar V, Rosen B, Varghese S. Characterization of bending balloon actuators. Front Robot AI 2022;9:991748. DOI
PubMed PMC
62. Rad C, Hancu O, Lapusan C. Data-driven kinematic model of pneunets bending actuators for soft grasping tasks. Actuators
2022;11:58. DOI
63. Hwang Y, Paydar OH, Candler RN. Pneumatic microfinger with balloon fins for linear motion using 3D printed molds. Sensor Actuat
2015;234:65-71. DOI
64. Xavier MS, Fleming AJ, Yong YK. Experimental characterisation of hydraulic fiber-reinforced soft actuators for worm-like robots. In:
2019 7th International Conference on Control, Mechatronics and Automation (ICCMA); 2019 Nov 06-08; Delft, Netherlands. IEEE;
2019. pp. 204-9. DOI
65. Zhang B, Fan Y, Yang P, Cao T, Liao H. Worm-like soft robot for complicated tubular environments. Soft Robot 2019;6:399-413.
DOI
66. Webster RJ III, Jones BA. Design and kinematic modeling of constant curvature continuum robots: a review. Int J Robot Res
2010;29:1661-83. DOI
67. Zhang X, Pan T, Heung HL, Chiu PWY, Li Z. A Biomimetic soft robot for inspecting pipeline with significant diameter variation. In:
2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS); 2018 Oct 01-05; Madrid, Spain. IEEE; 2018. pp.
7486-91. DOI
68. Liu Z, Kleiner Y. State of the art review of inspection technologies for condition assessment of water pipes. Measurement 2013;46:1-
15. DOI
69. Guan L, Gao Y, Liu H, An W, Noureldin A. A review on small-diameter pipeline inspection gauge localization techniques: problems,
methods and challenges. In: 2019 International Conference on Communications, Signal Processing, and their Applications (ICCSPA);
2019 Mar 19-21; Sharjah, United Arab Emirates. IEEE; 2019. p. 1-6. DOI
70. Ayali A, Lange AB. Rhythmic behaviour and pattern-generating circuits in the locust: key concepts and recent updates. J Insect
Physiol 2010;56:834-43. DOI
71. Lin Y, Xu YX, Juang JY. Single-actuator soft robot for in-pipe crawling. Soft Robot 2023;10:174-86. DOI
72. Gray J, Lissmann HW. Studies in animal locomotion: VII. locomotory reflexes in the earthworm. J Exp Biol 1938;15:506-17. DOI

