Page 42 - Read Online
P. 42
Page 24 of 26 Blewitt et al. Soft Sci 2024;4:13 https://dx.doi.org/10.20517/ss.2023.49
using bellows - type artificial rubber muscles. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems; 2012
Oct 07-12; Vilamoura-Algarve, Portugal. IEEE; 2012. pp. 2935-40. DOI
18. Nemitz MP, Mihaylov P, Barraclough TW, Ross D, Stokes AA. Using voice coils to actuate modular soft robots: wormbot, an
example. Soft Robot 2016;3:198-204. DOI PubMed PMC
19. Saga N, Nakamura T, Ueda S. Study on peristaltic crawling robot using artificial muscle actuator. In: Proceedings 2003 IEEE/ASME
International Conference on Advanced Intelligent Mechatronics (AIM 2003); 2003 Jul 20-24; Kobe, Japan. IEEE; pp. 679-84. DOI
20. Tanise Y, Kishi T, Yamazaki S, Yamada Y, Nakamura T. High-speed response of the pneumatic actuator used in a peristaltic crawling
robot inspecting long-distance gas pipes. In: 2016 IEEE International Conference on Advanced Intelligent Mechatronics (AIM); 2016
Jul 12-15; Banff, Canada. IEEE; 2016. pp. 1234-9. DOI
21. Ikeuchi M, Nakamura T, Matsubara D. Development of an in-pipe inspection robot for narrow pipes and elbows using pneumatic
artificial muscles. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems; 2012 Oct 07-12; Vilamoura-
Algarve, Portugal. IEEE; 2012. pp. 926-31. DOI
22. Seok S, Onal CD, Cho KJ, Wood RJ, Rus D, Kim S. Meshworm: a peristaltic soft robot with antagonistic nickel titanium coil
actuators. IEEE/ASME T Mech 2013;18:1485-97. DOI
23. Horchler AD, Kandhari A, Daltorio KA, et al. Worm-like robotic locomotion with a compliant modular mesh. In: Wilson S, Verschure
P, Mura A, Prescott T, editors. Biomimetic and biohybrid systems. Living machines 2015. Lecture Notes in Computer Science.
Springer, Cham; 2015. pp. 26-37. DOI
24. Daltorio KA, Boxerbaum AS, Horchler AD, Shaw KM, Chiel HJ, Quinn RD. Efficient worm-like locomotion: Slip and control of soft-
bodied peristaltic robots. Bioinspir Biomim 2013;8:035003. DOI
25. Dai X, Liu Y, Wang W, Song R, Li Y, Zhao J. Design and experimental validation of a worm-like tensegrity robot for in-pipe
locomotion. J Bionic Eng 2023;20:515-29. DOI
26. Sato H, Uchiyama K, Mano Y, et al. Development of a compact pneumatic valve using rotational motion for a pneumatically driven
mobile robot with periodic motion in a pipe. IEEE Access 2021;9:165271-85. DOI
27. Seok S, Onal CD, Wood R, Rus D, Kim S. Peristaltic locomotion with antagonistic actuators in soft robotics. In: 2010 IEEE
International Conference on Robotics and Automation; 2010 May 03-07; Anchorage, USA. IEEE; 2010. pp. 1228-33. DOI
28. Mano Y, Ishikawa R, Yamada Y, Nakamura T. Development of high-speed type peristaltic crawling robot for long-distance and
complex-line sewer pipe inspection. In: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS); 2018 Oct
01-05; Madrid, Spain. IEEE; 2018. pp. 8177-83. DOI
29. Yamamoto T, Konyo M, Tadakuma K, Tadokoro S. High-speed sliding-inchworm motion mechanism with expansion-type pneumatic
hollow-shaft actuators for in-pipe inspections. Mechatronics 2018;56:101-14. DOI
30. You TL, Philamore H, Matsuno F. A magneto-active elastomer crawler with peristaltic and caterpillar locomotion patterns. Actuators
2021;10:74. DOI
31. Polygerinos P, Wang Z, Overvelde JTB, et al. Modeling of soft fiber-reinforced bending actuators. IEEE T Robot 2015;31:778-89.
DOI
32. Shi L, Guo S, Li M, et al. A novel soft biomimetic microrobot with two motion attitudes. Sensors 2012;12:16732-58. DOI
33. Lin HT, Leisk GG, Trimmer B. GoQBot: a caterpillar-inspired soft-bodied rolling robot. Bioinsp Biomim 2011;6:26007. DOI
34. Omori H, Hayakawa T, Nakamura T. Locomotion and turning patterns of a peristaltic crawling earthworm robot composed of flexible
units. In: 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems; 2008 Sep 22-26; Nice, France. IEEE; 2008. pp.
1630-5. DOI
35. Zhang Y, Zhang M, Sun H, Jia Q. Design and motion analysis of a flexible squirm pipe robot. In: 2010 International Conference on
Intelligent System Design and Engineering Application; 2010 Oct 13-14; Changsha, China. IEEE; 2010. pp. 527-31. DOI
36. Liu X, Song M, Fang Y, Zhao Y, Cao C. Worm-inspired soft robots enable adaptable pipeline and tunnel inspection. Adv Intell Syst
2022:4;2100128. DOI
37. Bertetto AM, Ruggiu M. In-pipe inch-worm pneumatic flexible robot. In: 2001 IEEE/ASME International Conference on Advanced
Intelligent Mechatronics. Proceedings (Cat. No.01TH8556); Como, Italy. IEEE; 2001. pp. 1226-31. DOI
38. Tanaka T, Harigaya K, Nakamura T. Development of a peristaltic crawling robot for long-distance inspection of sewer pipes. In: 2014
IEEE/ASME International Conference on Advanced Intelligent Mechatronics; 2014 Jul 08-11; Besacon, France. IEEE; 2014. pp.
1552-7. DOI
39. Basem F, Bastaki N. Worm robot with dynamic adaptation to pipe diameter for in-pipe inspection 1. 2014. Available from: https://
www.semanticscholar.org/paper/Worm-Robot-with-Dynamic-Adaptation-to-Pipe-Diameter-Yousef-Bastaki/
b666c6bf7259ee0b7feb898f99d12359f6a11c76. [Last accessed on 5 Mar 2024].
40. Kusunose K, Akagi T, Dohta S, Kobayashi W, Nakagawa K. Development of pipe holding mechanism and bending unit using
extension type flexible actuator for flexible pipe inspection robot. Int J Mech Eng Robot Res 2019;8:129-34. DOI
41. Hayashi K, Akagi T, Dohta S, et al. Improvement of pipe holding mechanism and inchworm type flexible pipe inspection robot. Int J
Mech Eng Robot Res 2020;9:894-9. DOI
42. Persson BNJ. Theory of rubber friction and contact mechanics. J Chem Phys 2001;115:3840-61. DOI
43. Fang D, Jia G, Wu J, et al. A novel worm-like in-pipe robot with the rigid and soft structure. J Bionic Eng 2023;20:2559-69. DOI
44. Li M, Wang G, Wang J, Zheng Y, Jiao X. Development of an inchworm-like soft pipe robot for detection. Int J Mech Sci
2023;253:108392. DOI

