Page 41 - Read Online
P. 41
Blewitt et al. Soft Sci 2024;4:13 https://dx.doi.org/10.20517/ss.2023.49 Page 23 of 26
Provided administrative and material support as well as assisting in editing of the paper: Monk S, Andrew J,
Cheneler D
Availability of data and materials
Not applicable.
Financial support and sponsorship
This research was funded by the Engineering and Physical Sciences Research Council UK and Dounreay
Restoration Site Ltd.
Conflicts of interests
All authors declared that there are no conflicts of interest.
Ethical approval and consent to participate
Not applicable.
Consent for publication
Not applicable.
Copyright
© The Author(s) 2024.
REFERENCES
1. Verma A, Kaiwart A, Dhar Dubey N, Naseer F, Pradhan S. A review on various types of in-pipe inspection robot. Mater Today Proc
2022;50:1425-34. DOI
2. Mishra D, Agrawal KK, Abbas A, Srivastava R, Yadav RS. PIG [Pipe Inspection Gauge]: an artificial dustman for cross country
pipelines. Procedia Comput Sci 2019;152:333-40. DOI
3. Jang H, Kim TY, Lee YC, et al. A review: technological trends and development direction of pipeline robot systems. J Intell Robot
Syst 2022;105:59. DOI
4. Kim S, Laschi C, Trimmer B. Soft robotics: a bioinspired evolution in robotics. Trends Biotechnol 2013;31:287-94. DOI PubMed
5. Karipoth P, Christou A, Pullanchiyodan A, Dahiya R. Bioinspired inchworm- and earthworm-like soft robots with intrinsic strain
sensing. Adv Intell Syst 2022;4:2100092. DOI
6. Menciassi A, Accoto D, Gorini S, Dario P. Development of a biomimetic miniature robotic crawler. Auton Robots 2006;21:155-63.
DOI
7. Pfeil S, Henke M, Katzer K, Zimmermann M, Gerlach G. A worm-like biomimetic crawling robot based on cylindrical dielectric
elastomer actuators. Front Robot AI 2020;7:9. DOI PubMed PMC
8. Liu J, Li P, Zuo S. Actuation and design innovations in earthworm-inspired soft robots: a review. Front Bioeng Biotechnol
2023;11:1088105. DOI PubMed PMC
9. Jung K, Koo JC, Nam J, Lee YK, Choi HR. Artificial annelid robot driven by soft actuators. Bioinspir Biomim 2007;2:S42. DOI
10. Blumenschein LH, Coad MM, Haggerty DA, Okamura AM, Hawkes EW. Design, modeling, control, and application of everting vine
robots. Front Roboti AI 2020;7:548266. DOI PubMed PMC
11. Kamata M, Yamazaki S, Tanise Y, Yamada Y, Nakamura T. Morphological change in peristaltic crawling motion of a narrow pipe
inspection robot inspired by earthworm’s locomotion. Adv Robot 2018;32:386-97. DOI
12. Du L, Ma S, Tokuda K, Tian Y, Li L. Bidirectional locomotion of soft inchworm crawler using dynamic gaits. Front Robot AI
2022;9:899850. DOI PubMed PMC
13. Tang Z, Lu J, Wang Z, Ma G, Chen W, Feng H. Development of a new multi-cavity pneumatic-driven earthworm-like soft robot.
Robotica 2020;38:2290-304. DOI
14. Gao H, Du J, Tang M, Shi W. Research on a new type peristaltic micro in-pipe robot. In: The 2011 IEEE/ICME International
Conference on Complex Medical Engineering; 2011 May 22-25; Harbin, China. IEEE; 2011. pp. 26-30. DOI
15. Das R, Babu SPM, Visentin F, Palagi S, Mazzolai B. An earthworm-like modular soft robot for locomotion in multi-terrain
environments. Sci Rep 2023;13:1571. DOI
16. Wang K, Yan G, Ma G, Ye D. An earthworm-like robotic endoscope system for human intestine: design, analysis, and experiment.
Ann Biomed Eng 2009;37:210-21. DOI
17. Yanagida T, Adachi K, Yokojima M, Nakamura T. Development of a peristaltic crawling robot attached to a large intestine endoscope

