Page 80 - Read Online
P. 80

Page 12 of 12                             Luo et al. Soft Sci 2024;4:7   https://dx.doi.org/10.20517/ss.2023.40

               28.      Ropp RC. Encyclopedia of the alkaline earth compounds. 1st ed. Elsevier Pul. Co; 2013.  DOI
               29.      Wang Y, Li Y, Zhang J, Zhuang J, Ren L, Du Y. Native surface oxides featured liquid metals for printable self-powered
                   photoelectrochemical device. Front Chem 2019;7:356.  DOI
               30.      Ren T, Yu Z, Yu H, et al. Interfacial polarization in metal-organic framework reconstructed Cu/Pd/CuO  multi-phase heterostructures
                                                                                       x
                   for electrocatalytic nitrate reduction to ammonia. Appl Catal B Environ 2022;318:121805.  DOI
               31.      Lyu Z, Zhu S, Xie M, et al. Controlling the surface oxidation of Cu nanowires improves their catalytic selectivity and stability toward
                   C  products in CO  reduction. Angew Chem Int Ed Engl 2021;60:1909-15.  DOI
                    2+         2
               32.      Wang Y, Zhou W, Jia R, Yu Y, Zhang B. Unveiling the activity origin of a copper-based electrocatalyst for selective nitrate reduction
                   to ammonia. Angew Chem Int Ed Engl 2020;59:5350-4.  DOI
               33.      Lv J, Wu S, Tian Z, Ye Y, Liu J, Liang C. Construction of PdO-Pd interfaces assisted by laser irradiation for enhanced electrocatalytic
                   N  reduction reaction. J Mater Chem A 2019;7:12627-34.  DOI
                    2
               34.      Powell D, Compaan A, Macdonald JR, Forman RA. Raman-scattering study of ion-implantation-produced damage in Cu O. Phys Rev
                                                                                                 2
                   B 1975;12:20.  DOI
               35.      Balık  M,  Bulut  V,  Erdogan  IY.  Optical,  structural  and  phase  transition  properties  of  Cu O,  CuO  and  Cu O/CuO:  their
                                                                                    2           2
                   photoelectrochemical sensor applications. Int J Hydrogen Energ 2019;44:18744-55.  DOI
               36.      Li Q, Xu P, Zhang B, et al. Structure-dependent electrocatalytic properties of Cu O nanocrystals for oxygen reduction reaction. J Phys
                                                                       2
                   Chem C 2013;117:13872-8.  DOI
               37.      Lee JH, Shoeman DW, Kim SS, Csallany AS. The effect of superoxide anion in the production of seven major cholesterol oxidation
                   products in aptoric and protic conditions. Int J Food Sci Nutr 1997;48:151-9.  DOI
               38.      Khaliq N, Rasheed MA, Cha G, et al. Development of non-enzymatic cholesterol bio-sensor based on TiO  nanotubes decorated with
                                                                                        2
                   Cu O nanoparticles. Sensor Actuat B Chem 2020;302:127200.  DOI
                     2
               39.      Fang Q, Qin Y, Wang H, et al. Ultra-low content bismuth-anchored gold aerogels with plasmon property for enhanced nonenzymatic
                   electrochemical glucose sensing. Anal Chem 2022;94:11030-7.  DOI
               40.      Zhang R, Ke S, Lu W, et al. Constructing a Si-CuO core-shell nanowire heterojunction photoanode for enzyme-free and highly-
                   sensitive glucose sensing. Appl Surf Sci 2023;632:157593.  DOI
               41.      Gao T, Li TT, Liao X, Lin JH, Shiu BC, Lou CW. Construction of Cu O/TiO  heterojunction photoelectrodes for photoelectrochemical
                                                                2    2
                   determination of glucose. J Mater Res Technol 2022;21:798-809.  DOI
               42.      Cory NJ, Visser E, Chamier J, Sackey J, Cummings F, Chowdhury M. Electrodeposited CuO thin film for wide linear range
                   photoelectrochemical glucose sensing. Appl Surf Sci 2022;576:151822.  DOI
               43.      Zhuang X, Han C, Zhang J, Sang Z, Meng W. Cu/Cu O heterojunctions in carbon framework for highly sensitive detection of glucose.
                                                     2
                   J Electroanal Chem 2021;882:115040.  DOI
               44.      Cui F, Sun H, Yang X, et al. Laser-induced graphene (LIG)-based Au@CuO/V CT  MXene non-enzymatic electrochemical sensors
                                                                       2  x
                   for the urine glucose test. Chem Eng J 2023;457:141303.  DOI
               45.      Li M, Fang L, Zhou H, et al. Three-dimensional porous MXene/NiCo-LDH composite for high performance non-enzymatic glucose
                   sensor. Appl Surf Sci 2019;495:143554.  DOI
               46.      Gopal TS, Jeong SK, Alrebdi TA, et al. MXene-based composite electrodes for efficient electrochemical sensing of glucose by non-
                   enzymatic method. Mater Today Chem 2022;24:100891.  DOI
               47.      Li QF, Chen X, Wang H, Liu M, Peng HL. Pt/MXene-based flexible wearable non-enzymatic electrochemical sensor for continuous
                   glucose detection in sweat. ACS Appl Mater Interfaces 2023;15:13290-8.  DOI
   75   76   77   78   79   80   81   82   83   84   85