Page 80 - Read Online
P. 80
Page 12 of 12 Luo et al. Soft Sci 2024;4:7 https://dx.doi.org/10.20517/ss.2023.40
28. Ropp RC. Encyclopedia of the alkaline earth compounds. 1st ed. Elsevier Pul. Co; 2013. DOI
29. Wang Y, Li Y, Zhang J, Zhuang J, Ren L, Du Y. Native surface oxides featured liquid metals for printable self-powered
photoelectrochemical device. Front Chem 2019;7:356. DOI
30. Ren T, Yu Z, Yu H, et al. Interfacial polarization in metal-organic framework reconstructed Cu/Pd/CuO multi-phase heterostructures
x
for electrocatalytic nitrate reduction to ammonia. Appl Catal B Environ 2022;318:121805. DOI
31. Lyu Z, Zhu S, Xie M, et al. Controlling the surface oxidation of Cu nanowires improves their catalytic selectivity and stability toward
C products in CO reduction. Angew Chem Int Ed Engl 2021;60:1909-15. DOI
2+ 2
32. Wang Y, Zhou W, Jia R, Yu Y, Zhang B. Unveiling the activity origin of a copper-based electrocatalyst for selective nitrate reduction
to ammonia. Angew Chem Int Ed Engl 2020;59:5350-4. DOI
33. Lv J, Wu S, Tian Z, Ye Y, Liu J, Liang C. Construction of PdO-Pd interfaces assisted by laser irradiation for enhanced electrocatalytic
N reduction reaction. J Mater Chem A 2019;7:12627-34. DOI
2
34. Powell D, Compaan A, Macdonald JR, Forman RA. Raman-scattering study of ion-implantation-produced damage in Cu O. Phys Rev
2
B 1975;12:20. DOI
35. Balık M, Bulut V, Erdogan IY. Optical, structural and phase transition properties of Cu O, CuO and Cu O/CuO: their
2 2
photoelectrochemical sensor applications. Int J Hydrogen Energ 2019;44:18744-55. DOI
36. Li Q, Xu P, Zhang B, et al. Structure-dependent electrocatalytic properties of Cu O nanocrystals for oxygen reduction reaction. J Phys
2
Chem C 2013;117:13872-8. DOI
37. Lee JH, Shoeman DW, Kim SS, Csallany AS. The effect of superoxide anion in the production of seven major cholesterol oxidation
products in aptoric and protic conditions. Int J Food Sci Nutr 1997;48:151-9. DOI
38. Khaliq N, Rasheed MA, Cha G, et al. Development of non-enzymatic cholesterol bio-sensor based on TiO nanotubes decorated with
2
Cu O nanoparticles. Sensor Actuat B Chem 2020;302:127200. DOI
2
39. Fang Q, Qin Y, Wang H, et al. Ultra-low content bismuth-anchored gold aerogels with plasmon property for enhanced nonenzymatic
electrochemical glucose sensing. Anal Chem 2022;94:11030-7. DOI
40. Zhang R, Ke S, Lu W, et al. Constructing a Si-CuO core-shell nanowire heterojunction photoanode for enzyme-free and highly-
sensitive glucose sensing. Appl Surf Sci 2023;632:157593. DOI
41. Gao T, Li TT, Liao X, Lin JH, Shiu BC, Lou CW. Construction of Cu O/TiO heterojunction photoelectrodes for photoelectrochemical
2 2
determination of glucose. J Mater Res Technol 2022;21:798-809. DOI
42. Cory NJ, Visser E, Chamier J, Sackey J, Cummings F, Chowdhury M. Electrodeposited CuO thin film for wide linear range
photoelectrochemical glucose sensing. Appl Surf Sci 2022;576:151822. DOI
43. Zhuang X, Han C, Zhang J, Sang Z, Meng W. Cu/Cu O heterojunctions in carbon framework for highly sensitive detection of glucose.
2
J Electroanal Chem 2021;882:115040. DOI
44. Cui F, Sun H, Yang X, et al. Laser-induced graphene (LIG)-based Au@CuO/V CT MXene non-enzymatic electrochemical sensors
2 x
for the urine glucose test. Chem Eng J 2023;457:141303. DOI
45. Li M, Fang L, Zhou H, et al. Three-dimensional porous MXene/NiCo-LDH composite for high performance non-enzymatic glucose
sensor. Appl Surf Sci 2019;495:143554. DOI
46. Gopal TS, Jeong SK, Alrebdi TA, et al. MXene-based composite electrodes for efficient electrochemical sensing of glucose by non-
enzymatic method. Mater Today Chem 2022;24:100891. DOI
47. Li QF, Chen X, Wang H, Liu M, Peng HL. Pt/MXene-based flexible wearable non-enzymatic electrochemical sensor for continuous
glucose detection in sweat. ACS Appl Mater Interfaces 2023;15:13290-8. DOI

