Page 10 - Read Online
P. 10
Page 8 of 9 Wang. Soft Sci 2024;4:5 https://dx.doi.org/10.20517/ss.2023.44
temperature and gas measurements. Chem Eng J 2020;400:125928. DOI
42. Yang X, Wang S, Liu M, et al. All-nanofiber-based janus epidermal electrode with directional sweat permeability for artifact-free
biopotential monitoring. Small 2022;18:2106477. DOI PubMed
43. Oh TI, Yoon S, Kim TE, et al. Nanofiber web textile dry electrodes for long-term biopotential recording. IEEE Trans Biomed Circuits
Syst 2013;7:204-11. DOI
44. Wang Y, Lee S, Wang H, et al. Robust, self-adhesive, reinforced polymeric nanofilms enabling gas-permeable dry electrodes for long-
term application. Proc Natl Acad Sci U S A 2021;118:e2111904118. DOI PubMed PMC
45. Yamagishi K, Takeoka S, Fujie T. Printed nanofilms mechanically conforming to living bodies. Biomater Sci 2019;7:520-31. DOI
PubMed
46. Nawrocki RA, Jin H, Lee S, Yokota T, Sekino M, Someya T. Self-adhesive and ultra-conformable, sub-300 nm dry thin-film
electrodes for surface monitoring of biopotentials. Adv Funct Mater 2018;28:1803279. DOI
47. Ferrari LM, Ismailov U, Badier JM, Greco F, Ismailova E. Conducting polymer tattoo electrodes in clinical electro- and magneto-
encephalography. npj Flex Electron 2020;4:4. DOI
48. Ha T, Tran J, Liu S, et al. A chest-laminated ultrathin and stretchable E-tattoo for the measurement of electrocardiogram,
seismocardiogram, and cardiac time intervals. Adv Sci 2019;6:1900290. DOI PubMed PMC
49. Yang J, Zhang Z, Zhou P, et al. Toward a new generation of permeable skin electronics. Nanoscale 2023;15:3051-78. DOI
50. Miyamoto A, Lee S, Cooray NF, et al. Inflammation-free, gas-permeable, lightweight, stretchable on-skin electronics with
nanomeshes. Nat Nanotechnol 2017;12:907-13. DOI
51. Wang Y, Lee S, Yokota T, et al. A durable nanomesh on-skin strain gauge for natural skin motion monitoring with minimum
mechanical constraints. Sci Adv 2020;6:eabb7043. DOI PubMed PMC
52. Zhang JH, Li Z, Xu J, et al. Versatile self-assembled electrospun micropyramid arrays for high-performance on-skin devices with
minimal sensory interference. Nat Commun 2022;13:5839. DOI PubMed PMC
53. Ma Z, Huang Q, Xu Q, et al. Permeable superelastic liquid-metal fibre mat enables biocompatible and monolithic stretchable
electronics. Nat Mater 2021;20:859-68. DOI
54. Patel S, Ershad F, Lee J, et al. Drawn-on-skin sensors from fully biocompatible inks toward high-quality electrophysiology. Small
2022;18:2107099. DOI PubMed
55. Wang C, Wang H, Wang B, et al. On-skin paintable biogel for long-term high-fidelity electroencephalogram recording. Sci Adv
2022;8:eabo1396. DOI PubMed PMC
56. Cheng S, Lou Z, Zhang L, et al. Ultrathin hydrogel films toward breathable skin-integrated electronics. Adv Mater 2023;35:2206793.
DOI PubMed
57. Cheng J, You L, Cai X, et al. Fermentation-inspired gelatin hydrogels with a controllable supermacroporous structure and high
ductility for wearable flexible sensors. ACS Appl Mater Interfaces 2022;14:26338-49. DOI
58. Ma X, Shi X, Wang Y, et al. Stretchable porous conductive hydrogel films prepared by emulsion template method as flexible sensors.
Colloids Surf A Physicochem Eng Asp 2023;676:132272. DOI
59. Li W, Liu Q, Zhang Y, et al. Biodegradable materials and green processing for green electronics. Adv Mater 2020;32:2001591. DOI
PubMed
60. Ghosh SK, Park J, Na S, Kim MP, Ko H. A fully biodegradable ferroelectric skin sensor from edible porcine skin gelatine. Adv Sci
2021;8:2005010. DOI PubMed PMC
61. Meng L, Fu Q, Hao S, Xu F, Yang J. Self-adhesive, biodegradable silk-based dry electrodes for epidermal electrophysiological
monitoring. Chem Eng J 2022;427:131999. DOI
62. Ye G, Song D, Song J, Zhao Y, Liu N. A fully biodegradable and biocompatible ionotronic skin for transient electronics. Adv Funct
Mater 2023;33:2303990. DOI
63. Ma T, Lin Y, Ma X, Zhang J, Li D, Kong D. Stretchable, breathable, and washable epidermal electrodes based on microfoam
reinforced ultrathin conductive nanocomposites. Nano Res 2023;16:10412-9. DOI
64. Chen T, Ye G, Wu H, et al. Highly conductive and underwater stable ionic skin for all-day epidermal biopotential monitoring. Adv
Funct Mater 2022;32:2206424. DOI
65. Tang M, Zheng P, Wang K, et al. Autonomous self-healing, self-adhesive, highly conductive composites based on a silver-filled
polyborosiloxane/polydimethylsiloxane double-network elastomer. J Mater Chem A 2019;7:27278-88. DOI
66. Huang X, Chen C, Ma X, et al. In situ forming dual-conductive hydrogels enable conformal, self-adhesive and antibacterial epidermal
electrodes. Adv Funct Mater 2023;33:2302846. DOI
67. Wang Y, Haick H, Guo S, et al. Skin bioelectronics towards long-term, continuous health monitoring. Chem Soc Rev 2022;51:3759-93.
DOI
68. Majumder S, Chen L, Marinov O, Chen CH, Mondal T, Deen MJ. Noncontact wearable wireless ECG systems for long-term
monitoring. IEEE Rev Biomed Eng 2018;11:306-21. DOI PubMed
69. Yang H, Ji S, Chaturvedi I, et al. Adhesive biocomposite electrodes on sweaty skin for long-term continuous electrophysiological
monitoring. ACS Mater Lett 2020;2:478-84. DOI
70. Pan L, Cai P, Mei L, et al. A compliant ionic adhesive electrode with ultralow bioelectronic impedance. Adv Mater 2020;32:2003723.
DOI PubMed
71. Wan C, Wu Z, Ren M, et al. In situ formation of conductive epidermal electrodes using a fully integrated flexible system and injectable

