Page 9 - Read Online
P. 9

Wang. Soft Sci 2024;4:5  https://dx.doi.org/10.20517/ss.2023.44                  Page 7 of 9

                   2021;16:2395-417.  DOI
               11.      Wang Y, Yin L, Bai Y, et al. Electrically compensated, tattoo-like electrodes for epidermal electrophysiology at scale. Sci Adv
                   2020;6:43.  DOI  PubMed  PMC
               12.      Xue H, Wang D, Jin M, et al. Hydrogel electrodes with conductive and substrate-adhesive layers for noninvasive long-term EEG
                   acquisition. Microsyst Nanoeng 2023;9:79.  DOI  PubMed  PMC
               13.      Ershad F, Thukral A, Yue J, et al. Ultra-conformal drawn-on-skin electronics for multifunctional motion artifact-free sensing and
                   point-of-care treatment. Nat Commun 2020;11:3823.  DOI  PubMed  PMC
               14.      Kim DH, Lu N, Ma R, et al. Epidermal electronics. Science 2011;333:838-43.  DOI
               15.      Jang KI, Li K, Chung HU, et al. Self-assembled three dimensional network designs for soft electronics. Nat Commun 2017;8:15894.
                   DOI  PubMed  PMC
               16.      Wang Y, Gong S, Wang SJ, Simon GP, Cheng W. Volume-invariant ionic liquid microbands as highly durable wearable biomedical
                   sensors. Mater Horiz 2016;3:208-13.  DOI
               17.      Wang Y, Gong S, Wang SJ, et al. Standing enokitake-like nanowire films for highly stretchable elastronics. ACS Nano 2018;12:9742-
                   9.  DOI
               18.      Wei B, Wang Z, Guo H, et al. Ultraflexible tattoo electrodes for epidermal and in vivo electrophysiological recording. Cell Rep Phys
                   Sci 2023;4:101335.  DOI
               19.      Li Y, Wang S, Zhang J, et al. A highly stretchable and permeable liquid metal micromesh conductor by physical deposition for
                   epidermal electronics. ACS Appl Mater Interfaces 2022;14:13713-21.  DOI
               20.      Niu W, Tian Q, Liu Z, Liu X. Solvent-free and skin-like supramolecular ion-conductive elastomers with versatile processability for
                   multifunctional ionic tattoos and on-skin bioelectronics. Adv Mater 2023;35:2304157.  DOI  PubMed
               21.      Song D, Ye G, Zhao Y, Zhang Y, Hou X, Liu N. An all-in-one, bioderived, air-permeable, and sweat-stable MXene epidermal
                   electrode for muscle theranostics. ACS Nano 2022;16:17168-78.  DOI
               22.      Deng J, Yuk H, Wu J, et al. Electrical bioadhesive interface for bioelectronics. Nat Mater 2021;20:229-36.  DOI
               23.      Jung D, Lim C, Shim HJ, et al. Highly conductive and elastic nanomembrane for skin electronics. Science 2021;373:1022-6.  DOI
               24.      Ho MD, Ling Y, Yap LW, et al. Percolating network of ultrathin gold nanowires and silver nanowires toward “invisible” wearable
                   sensors for detecting emotional expression and apexcardiogram. Adv Funct Mater 2017;27:1700845.  DOI
               25.      Xu X, Luo M, He P, Guo X, Yang J. Screen printed graphene electrodes on textile for wearable electrocardiogram monitoring. Appl
                   Phys A 2019;125:714.  DOI
               26.      Koo JH, Jeong S, Shim HJ, et al. Wearable electrocardiogram monitor using carbon nanotube electronics and color-tunable organic
                   light-emitting diodes. ACS Nano 2017;11:10032-41.  DOI
               27.      Zhao Y, Zhang S, Yu T, et al. Ultra-conformal skin electrodes with synergistically enhanced conductivity for long-time and low-
                   motion artifact epidermal electrophysiology. Nat Commun 2021;12:4880.  DOI  PubMed  PMC
               28.      Zhang L, Kumar KS, He H, et al. Fully organic compliant dry electrodes self-adhesive to skin for long-term motion-robust epidermal
                   biopotential monitoring. Nat Commun 2020;11:4683.  DOI  PubMed  PMC
               29.      Sun B, McCay RN, Goswami S, et al. Gas-permeable, multifunctional on-skin electronics based on laser-induced porous graphene and
                   sugar-templated elastomer sponges. Adv Mater 2018;30:1804327.  DOI  PubMed
               30.      Namkoong M, Guo H, Rahman MS, et al. Moldable and transferrable conductive nanocomposites for epidermal electronics. Npj Flex
                   Electron 2022;6:41.  DOI  PubMed  PMC
               31.      Zhou W, Yao S, Wang H, Du Q, Ma Y, Zhu Y. Gas-permeable, ultrathin, stretchable epidermal electronics with porous electrodes.
                   ACS Nano 2020;14:5798-805.  DOI
               32.      Wang Y, Qiu Y, Ameri SK, et al. Low-cost, μm-thick, tape-free electronic tattoo sensors with minimized motion and sweat artifacts.
                   npj Flex Electron 2018;2:6.  DOI
               33.      Liu Y, Pharr M, Salvatore GA. Lab-on-skin: a review of flexible and stretchable electronics for wearable health monitoring. ACS Nano
                   2017;11:9614-35.  DOI  PubMed
               34.      Ray TR, Choi J, Bandodkar AJ, et al. Bio-integrated wearable systems: a comprehensive review. Chem Rev 2019;119:5461-533.  DOI
               35.      Fu Y, Zhao J, Dong Y, Wang X. Dry electrodes for human bioelectrical signal monitoring. Sensors 2020;20:3651.  DOI  PubMed
                   PMC
               36.      Li G, Wang S, Duan YY. Towards conductive-gel-free electrodes: understanding the wet electrode, semi-dry electrode and dry
                   electrode-skin interface impedance using electrochemical impedance spectroscopy fitting. Sens Actuators B Chem 2018;277:250-60.
                   DOI
               37.      Gao Q, Sun F, Li Y, et al. Biological tissue-inspired ultrasoft, ultrathin, and mechanically enhanced microfiber composite hydrogel for
                   flexible bioelectronics. Nanomicro Lett 2023;15:139.  DOI  PubMed  PMC
               38.      Lim C, Hong YJ, Jung J, et al. Tissue-like skin-device interface for wearable bioelectronics by using ultrasoft, mass-permeable, and
                   low-impedance hydrogels. Sci Adv 2021;7:eabd3716.  DOI  PubMed  PMC
               39.      Jung HC, Moon JH, Baek DH, et al. CNT/PDMS composite flexible dry electrodes for long-term ECG monitoring. IEEE Trans
                   Biomed Eng 2012;59:1472-9.  DOI  PubMed
               40.      Lee JH, Nam YW, Jung HC, Baek DH, Lee SH, Hong JS. Shear induced CNT/PDMS conducting thin film for electrode cardiogram
                   (ECG) electrode. BioChip J 2012;6:91-8.  DOI
               41.      Lu L, Yang B, Liu J. Flexible multifunctional graphite nanosheet/electrospun-polyamide 66 nanocomposite sensor for ECG, strain,
   4   5   6   7   8   9   10   11   12   13   14