Page 9 - Read Online
P. 9
Wang. Soft Sci 2024;4:5 https://dx.doi.org/10.20517/ss.2023.44 Page 7 of 9
2021;16:2395-417. DOI
11. Wang Y, Yin L, Bai Y, et al. Electrically compensated, tattoo-like electrodes for epidermal electrophysiology at scale. Sci Adv
2020;6:43. DOI PubMed PMC
12. Xue H, Wang D, Jin M, et al. Hydrogel electrodes with conductive and substrate-adhesive layers for noninvasive long-term EEG
acquisition. Microsyst Nanoeng 2023;9:79. DOI PubMed PMC
13. Ershad F, Thukral A, Yue J, et al. Ultra-conformal drawn-on-skin electronics for multifunctional motion artifact-free sensing and
point-of-care treatment. Nat Commun 2020;11:3823. DOI PubMed PMC
14. Kim DH, Lu N, Ma R, et al. Epidermal electronics. Science 2011;333:838-43. DOI
15. Jang KI, Li K, Chung HU, et al. Self-assembled three dimensional network designs for soft electronics. Nat Commun 2017;8:15894.
DOI PubMed PMC
16. Wang Y, Gong S, Wang SJ, Simon GP, Cheng W. Volume-invariant ionic liquid microbands as highly durable wearable biomedical
sensors. Mater Horiz 2016;3:208-13. DOI
17. Wang Y, Gong S, Wang SJ, et al. Standing enokitake-like nanowire films for highly stretchable elastronics. ACS Nano 2018;12:9742-
9. DOI
18. Wei B, Wang Z, Guo H, et al. Ultraflexible tattoo electrodes for epidermal and in vivo electrophysiological recording. Cell Rep Phys
Sci 2023;4:101335. DOI
19. Li Y, Wang S, Zhang J, et al. A highly stretchable and permeable liquid metal micromesh conductor by physical deposition for
epidermal electronics. ACS Appl Mater Interfaces 2022;14:13713-21. DOI
20. Niu W, Tian Q, Liu Z, Liu X. Solvent-free and skin-like supramolecular ion-conductive elastomers with versatile processability for
multifunctional ionic tattoos and on-skin bioelectronics. Adv Mater 2023;35:2304157. DOI PubMed
21. Song D, Ye G, Zhao Y, Zhang Y, Hou X, Liu N. An all-in-one, bioderived, air-permeable, and sweat-stable MXene epidermal
electrode for muscle theranostics. ACS Nano 2022;16:17168-78. DOI
22. Deng J, Yuk H, Wu J, et al. Electrical bioadhesive interface for bioelectronics. Nat Mater 2021;20:229-36. DOI
23. Jung D, Lim C, Shim HJ, et al. Highly conductive and elastic nanomembrane for skin electronics. Science 2021;373:1022-6. DOI
24. Ho MD, Ling Y, Yap LW, et al. Percolating network of ultrathin gold nanowires and silver nanowires toward “invisible” wearable
sensors for detecting emotional expression and apexcardiogram. Adv Funct Mater 2017;27:1700845. DOI
25. Xu X, Luo M, He P, Guo X, Yang J. Screen printed graphene electrodes on textile for wearable electrocardiogram monitoring. Appl
Phys A 2019;125:714. DOI
26. Koo JH, Jeong S, Shim HJ, et al. Wearable electrocardiogram monitor using carbon nanotube electronics and color-tunable organic
light-emitting diodes. ACS Nano 2017;11:10032-41. DOI
27. Zhao Y, Zhang S, Yu T, et al. Ultra-conformal skin electrodes with synergistically enhanced conductivity for long-time and low-
motion artifact epidermal electrophysiology. Nat Commun 2021;12:4880. DOI PubMed PMC
28. Zhang L, Kumar KS, He H, et al. Fully organic compliant dry electrodes self-adhesive to skin for long-term motion-robust epidermal
biopotential monitoring. Nat Commun 2020;11:4683. DOI PubMed PMC
29. Sun B, McCay RN, Goswami S, et al. Gas-permeable, multifunctional on-skin electronics based on laser-induced porous graphene and
sugar-templated elastomer sponges. Adv Mater 2018;30:1804327. DOI PubMed
30. Namkoong M, Guo H, Rahman MS, et al. Moldable and transferrable conductive nanocomposites for epidermal electronics. Npj Flex
Electron 2022;6:41. DOI PubMed PMC
31. Zhou W, Yao S, Wang H, Du Q, Ma Y, Zhu Y. Gas-permeable, ultrathin, stretchable epidermal electronics with porous electrodes.
ACS Nano 2020;14:5798-805. DOI
32. Wang Y, Qiu Y, Ameri SK, et al. Low-cost, μm-thick, tape-free electronic tattoo sensors with minimized motion and sweat artifacts.
npj Flex Electron 2018;2:6. DOI
33. Liu Y, Pharr M, Salvatore GA. Lab-on-skin: a review of flexible and stretchable electronics for wearable health monitoring. ACS Nano
2017;11:9614-35. DOI PubMed
34. Ray TR, Choi J, Bandodkar AJ, et al. Bio-integrated wearable systems: a comprehensive review. Chem Rev 2019;119:5461-533. DOI
35. Fu Y, Zhao J, Dong Y, Wang X. Dry electrodes for human bioelectrical signal monitoring. Sensors 2020;20:3651. DOI PubMed
PMC
36. Li G, Wang S, Duan YY. Towards conductive-gel-free electrodes: understanding the wet electrode, semi-dry electrode and dry
electrode-skin interface impedance using electrochemical impedance spectroscopy fitting. Sens Actuators B Chem 2018;277:250-60.
DOI
37. Gao Q, Sun F, Li Y, et al. Biological tissue-inspired ultrasoft, ultrathin, and mechanically enhanced microfiber composite hydrogel for
flexible bioelectronics. Nanomicro Lett 2023;15:139. DOI PubMed PMC
38. Lim C, Hong YJ, Jung J, et al. Tissue-like skin-device interface for wearable bioelectronics by using ultrasoft, mass-permeable, and
low-impedance hydrogels. Sci Adv 2021;7:eabd3716. DOI PubMed PMC
39. Jung HC, Moon JH, Baek DH, et al. CNT/PDMS composite flexible dry electrodes for long-term ECG monitoring. IEEE Trans
Biomed Eng 2012;59:1472-9. DOI PubMed
40. Lee JH, Nam YW, Jung HC, Baek DH, Lee SH, Hong JS. Shear induced CNT/PDMS conducting thin film for electrode cardiogram
(ECG) electrode. BioChip J 2012;6:91-8. DOI
41. Lu L, Yang B, Liu J. Flexible multifunctional graphite nanosheet/electrospun-polyamide 66 nanocomposite sensor for ECG, strain,

