Page 57 - Read Online
P. 57
Wang et al. Soft Sci 2023;3:34 https://dx.doi.org/10.20517/ss.2023.25 Page 25 of 26
70. Liang L, Chen G, Guo C. Enhanced thermoelectric performance by self-assembled layered morphology of polypyrrole nanowire/
single-walled carbon nanotube composites. Compos Sci Technol 2016;129:130-6. DOI
71. Liang L, Wang X, Wang M, Liu Z, Chen G, Sun G. Flexible poly(3,4-ethylenedioxythiophene)-tosylate/SWCNT composite films
with ultrahigh electrical conductivity for thermoelectric energy harvesting. Compos Commun 2021;25:100701. DOI
72. Zhang L, Harima Y, Imae I. Highly improved thermoelectric performances of PEDOT:PSS/SWCNT composites by solvent
treatment. Org Electron 2017;51:304-7. DOI
73. Bark H, Lee W, Lee H. Enhanced thermoelectric performance of CNT thin film p/n junctions doped with N-containing organic
molecules. Macromol Res 2015;23:795-801. DOI
74. Kim J, Kwon OH, Kang YH, Jang K, Cho SY, Yoo Y. A facile preparation route of n-type carbon buckypaper and its enhanced
thermoelectric performance. Compos Sci Technol 2017;153:32-9. DOI
75. Chortos A, Pochorovski I, Lin P, et al. Universal selective dispersion of semiconducting carbon nanotubes from commercial sources
using a supramolecular polymer. ACS Nano 2017;11:5660-9. DOI
76. Shimizu S, Iizuka T, Kanahashi K, et al. Thermoelectric detection of multi-subband density of states in semiconducting and metallic
single-walled carbon nanotubes. Small 2016;12:3388-92. DOI
77. Avery AD, Zhou BH, Lee J, et al. Tailored semiconducting carbon nanotube networks with enhanced thermoelectric properties. Nat
Energy 2016;1:16033. DOI
78. Wang L, Yao Q, Qu S, Shi W, Chen L. Influence of electronic type of SWNTs on the thermoelectric properties of SWNTs/PANI
composite films. Org Electron 2016;39:146-52. DOI
79. Tambasov IA, Voronin AS, Evsevskaya NP, et al. Thermoelectric properties of low-cost transparent single wall carbon nanotube thin
films obtained by vacuum filtration. Physica E Low Dimens Syst Nanostruct 2019;114:113619. DOI
80. Wu D, Huang C. High cross-plane thermoelectric performance of carbon nanotube sponge films. Int J Energy Res 2020;44:2332-6.
DOI
81. Gao W, Komatsu N, Taylor LW, et al. Macroscopically aligned carbon nanotubes for flexible and high-temperature electronics,
optoelectronics, and thermoelectrics. J Phys D Appl Phys 2020;53:063001. DOI
82. Matsumoto M, Yamaguchi R, Shima K, et al. Control of anisotropic conduction of carbon nanotube sheets and their use as planar-
type thermoelectric conversion materials. Sci Technol Adv Mater 2021;22:272-9. DOI PubMed PMC
83. Gee C, Tseng C, Wu F, et al. Few layer graphene paper from electrochemical process for heat conduction. Mater Res Innov
2014;18:208-13. DOI
84. Zhao W, Tan HT, Tan LP, et al. n-Type carbon nanotubes/silver telluride nanohybrid buckypaper with a high-thermoelectric figure of
merit. ACS Appl Mater Interfaces 2014;6:4940-6. DOI
85. Bark H, Kim J, Kim H, Yim J, Lee H. Effect of multiwalled carbon nanotubes on the thermoelectric properties of a bismuth telluride
matrix. Curr Appl Phys 2013;13:S111-4. DOI
86. Chen X, Feng L, Yu P, et al. Flexible thermoelectric films based on Bi Te nanosheets and carbon nanotube network with high n-type
3
2
performance. ACS Appl Mater Interfaces 2021;13:5451-9. DOI PubMed
87. Fan J, Huang X, Liu F, Deng L, Chen G. Feasibility of using chemically exfoliated SnSe nanobelts in constructing flexible SWCNTs-
based composite films for high-performance thermoelectric applications. Compos Commun 2021;24:100612. DOI
88. Gao J, Liu C, Miao L, Wang X, Peng Y, Chen Y. Enhanced power factor in flexible reduced graphene oxide/nanowires hybrid films
for thermoelectrics. RSC Adv 2016;6:31580-7. DOI
89. Xiao Z, Du Y, Meng Q, Wang L. Thermoelectric characteristics of flexible reduced graphene oxide/silver selenide nanowire
composites prepared by a facile vacuum filtration process. Chinese Phys B 2022;31:028103. DOI
90. Chen Z, Cui Y, Liang L, et al. Flexible film and thermoelectric device of single-walled carbon nanotube@conductive metal-organic
framework composite. Mater Today Nano 2022;20:100276. DOI
91. Yang S, Qiu P, Chen L, Shi X. Recent Developments in Flexible Thermoelectric Devices. Small Sci 2021;1:2100005. DOI
92. Ding Y, Qiu Y, Cai K, et al. High performance n-type Ag Se film on nylon membrane for flexible thermoelectric power generator.
2
Nat Commun 2019;10:841. DOI PubMed PMC
93. Drymiotis F, Day TW, Brown DR, Heinz NA, Jeffrey Snyder G. Enhanced thermoelectric performance in the very low thermal
conductivity Ag Se Te . Appl Phys Lett 2013;103:143906. DOI
2 0.5 0.5
94. Lu Y, Liu Y, Li Y, Cai K. The influence of Ga doping on preparation and thermoelectric properties of flexible Ag Se films. Compos
2
Commun 2021;27:100895. DOI
95. Wu M, Cai K, Li X, et al. Ultraflexible and high-thermoelectric-performance sulfur-doped Ag Se film on nylon for power generators.
2
ACS Appl Mater Interfaces 2022;14:4307-15. DOI PubMed
96. Jiang C, Ding Y, Cai K, et al. Ultrahigh performance of n-type Ag Se films for flexible thermoelectric power generators. ACS Appl
2
Mater Interfaces 2020;12:9646-55. DOI PubMed
97. Jiang C, Wei P, Ding Y, et al. Ultrahigh performance polyvinylpyrrolidone/Ag Se composite thermoelectric film for flexible energy
2
harvesting. Nano Energy 2021;80:105488. DOI
98. Liu Y, Lu Y, Wang Z, et al. High performance Ag Se films by a one-pot method for a flexible thermoelectric generator. J Mater
2
Chem A 2022;10:25644-51. DOI
99. Gao Q, Wang W, Lu Y, et al. High Power Factor Ag/Ag Se composite films for flexible thermoelectric generators. ACS Appl Mater
2
Interfaces 2021;13:14327-33. DOI

