Page 57 - Read Online
P. 57

Wang et al. Soft Sci 2023;3:34  https://dx.doi.org/10.20517/ss.2023.25          Page 25 of 26

               70.       Liang L, Chen G, Guo C. Enhanced thermoelectric performance by self-assembled layered morphology of polypyrrole nanowire/
                    single-walled carbon nanotube composites. Compos Sci Technol 2016;129:130-6.  DOI
               71.       Liang L, Wang X, Wang M, Liu Z, Chen G, Sun G. Flexible poly(3,4-ethylenedioxythiophene)-tosylate/SWCNT composite films
                    with ultrahigh electrical conductivity for thermoelectric energy harvesting. Compos Commun 2021;25:100701.  DOI
               72.       Zhang L, Harima Y, Imae I. Highly improved thermoelectric performances of PEDOT:PSS/SWCNT composites by solvent
                    treatment. Org Electron 2017;51:304-7.  DOI
               73.       Bark H, Lee W, Lee H. Enhanced thermoelectric performance of CNT thin film p/n junctions doped with N-containing organic
                    molecules. Macromol Res 2015;23:795-801.  DOI
               74.       Kim J, Kwon OH, Kang YH, Jang K, Cho SY, Yoo Y. A facile preparation route of n-type carbon buckypaper and its enhanced
                    thermoelectric performance. Compos Sci Technol 2017;153:32-9.  DOI
               75.       Chortos A, Pochorovski I, Lin P, et al. Universal selective dispersion of semiconducting carbon nanotubes from commercial sources
                    using a supramolecular polymer. ACS Nano 2017;11:5660-9.  DOI
               76.       Shimizu S, Iizuka T, Kanahashi K, et al. Thermoelectric detection of multi-subband density of states in semiconducting and metallic
                    single-walled carbon nanotubes. Small 2016;12:3388-92.  DOI
               77.       Avery AD, Zhou BH, Lee J, et al. Tailored semiconducting carbon nanotube networks with enhanced thermoelectric properties. Nat
                    Energy 2016;1:16033.  DOI
               78.       Wang L, Yao Q, Qu S, Shi W, Chen L. Influence of electronic type of SWNTs on the thermoelectric properties of SWNTs/PANI
                    composite films. Org Electron 2016;39:146-52.  DOI
               79.       Tambasov IA, Voronin AS, Evsevskaya NP, et al. Thermoelectric properties of low-cost transparent single wall carbon nanotube thin
                    films obtained by vacuum filtration. Physica E Low Dimens Syst Nanostruct 2019;114:113619.  DOI
               80.       Wu D, Huang C. High cross-plane thermoelectric performance of carbon nanotube sponge films. Int J Energy Res 2020;44:2332-6.
                    DOI
               81.       Gao W, Komatsu N, Taylor LW, et al. Macroscopically aligned carbon nanotubes for flexible and high-temperature electronics,
                    optoelectronics, and thermoelectrics. J Phys D Appl Phys 2020;53:063001.  DOI
               82.       Matsumoto M, Yamaguchi R, Shima K, et al. Control of anisotropic conduction of carbon nanotube sheets and their use as planar-
                    type thermoelectric conversion materials. Sci Technol Adv Mater 2021;22:272-9.  DOI  PubMed  PMC
               83.       Gee C, Tseng C, Wu F, et al. Few layer graphene paper from electrochemical process for heat conduction. Mater Res Innov
                    2014;18:208-13.  DOI
               84.       Zhao W, Tan HT, Tan LP, et al. n-Type carbon nanotubes/silver telluride nanohybrid buckypaper with a high-thermoelectric figure of
                    merit. ACS Appl Mater Interfaces 2014;6:4940-6.  DOI
               85.       Bark H, Kim J, Kim H, Yim J, Lee H. Effect of multiwalled carbon nanotubes on the thermoelectric properties of a bismuth telluride
                    matrix. Curr Appl Phys 2013;13:S111-4.  DOI
               86.       Chen X, Feng L, Yu P, et al. Flexible thermoelectric films based on Bi Te  nanosheets and carbon nanotube network with high n-type
                                                                   3
                                                                 2
                    performance. ACS Appl Mater Interfaces 2021;13:5451-9.  DOI  PubMed
               87.       Fan J, Huang X, Liu F, Deng L, Chen G. Feasibility of using chemically exfoliated SnSe nanobelts in constructing flexible SWCNTs-
                    based composite films for high-performance thermoelectric applications. Compos Commun 2021;24:100612.  DOI
               88.       Gao J, Liu C, Miao L, Wang X, Peng Y, Chen Y. Enhanced power factor in flexible reduced graphene oxide/nanowires hybrid films
                    for thermoelectrics. RSC Adv 2016;6:31580-7.  DOI
               89.       Xiao Z, Du Y, Meng Q, Wang L. Thermoelectric characteristics of flexible reduced graphene oxide/silver selenide nanowire
                    composites prepared by a facile vacuum filtration process. Chinese Phys B 2022;31:028103.  DOI
               90.       Chen Z, Cui Y, Liang L, et al. Flexible film and thermoelectric device of single-walled carbon nanotube@conductive metal-organic
                    framework composite. Mater Today Nano 2022;20:100276.  DOI
               91.       Yang S, Qiu P, Chen L, Shi X. Recent Developments in Flexible Thermoelectric Devices. Small Sci 2021;1:2100005.  DOI
               92.       Ding Y, Qiu Y, Cai K, et al. High performance n-type Ag Se film on nylon membrane for flexible thermoelectric power generator.
                                                          2
                    Nat Commun 2019;10:841.  DOI  PubMed  PMC
               93.       Drymiotis F, Day TW, Brown DR, Heinz NA, Jeffrey Snyder G. Enhanced thermoelectric performance in the very low thermal
                    conductivity Ag Se Te . Appl Phys Lett 2013;103:143906.  DOI
                              2  0.5  0.5
               94.       Lu Y, Liu Y, Li Y, Cai K. The influence of Ga doping on preparation and thermoelectric properties of flexible Ag Se films. Compos
                                                                                              2
                    Commun 2021;27:100895.  DOI
               95.       Wu M, Cai K, Li X, et al. Ultraflexible and high-thermoelectric-performance sulfur-doped Ag Se film on nylon for power generators.
                                                                                2
                    ACS Appl Mater Interfaces 2022;14:4307-15.  DOI  PubMed
               96.       Jiang C, Ding Y, Cai K, et al. Ultrahigh performance of n-type Ag Se films for flexible thermoelectric power generators. ACS Appl
                                                               2
                    Mater Interfaces 2020;12:9646-55.  DOI  PubMed
               97.       Jiang C, Wei P, Ding Y, et al. Ultrahigh performance polyvinylpyrrolidone/Ag Se composite thermoelectric film for flexible energy
                                                                       2
                    harvesting. Nano Energy 2021;80:105488.  DOI
               98.       Liu Y, Lu Y, Wang Z, et al. High performance Ag Se films by a one-pot method for a flexible thermoelectric generator. J Mater
                                                      2
                    Chem A 2022;10:25644-51.  DOI
               99.       Gao Q, Wang W, Lu Y, et al. High Power Factor Ag/Ag Se composite films for flexible thermoelectric generators. ACS Appl Mater
                                                         2
                    Interfaces 2021;13:14327-33.  DOI
   52   53   54   55   56   57   58   59   60   61   62