Page 55 - Read Online
P. 55
Wang et al. Soft Sci 2023;3:34 https://dx.doi.org/10.20517/ss.2023.25 Page 23 of 26
2015;147:184-91. DOI
10. Song H, Meng Q, Lu Y, Cai K. Progress on PEDOT:PSS/Nanocrystal thermoelectric composites. Adv Electron Mater
2019;5:1800822. DOI
11. Wang Y, Yang L, Shi XL, et al. Flexible thermoelectric materials and generators: challenges and innovations. Adv Mater
2019;31:e1807916. DOI
12. Du Y, Xu J, Paul B, Eklund P. Flexible thermoelectric materials and devices. Appl Mater Today 2018;12:366-88. DOI
13. Zhang L, Shi X, Yang Y, Chen Z. Flexible thermoelectric materials and devices: from materials to applications. Mater Today
2021;46:62-108. DOI
14. Yang Q, Yang S, Qiu P, et al. Flexible thermoelectrics based on ductile semiconductors. Science 2022;377:854-8. DOI
15. Shi X, Chen H, Hao F, et al. Room-temperature ductile inorganic semiconductor. Nat Mater 2018;17:421-6. DOI
16. Hou C, Zhu M. Semiconductors flex thermoelectric power. Science 2022;377:815-6. DOI PubMed
17. Fan Z, Du D, Guan X, Ouyang J. Polymer films with ultrahigh thermoelectric properties arising from significant seebeck coefficient
enhancement by ion accumulation on surface. Nano Energy 2018;51:481-8. DOI
18. Wang L, Zhang Z, Liu Y, et al. Exceptional thermoelectric properties of flexible organic-inorganic hybrids with monodispersed and
periodic nanophase. Nat Commun 2018;9:3817. DOI PubMed PMC
19. Kim D, Park Y, Ju D, Lee G, Kwon W, Cho K. Energy-filtered acceleration of charge-carrier transport in organic thermoelectric
nanocomposites. Chem Mater 2021;33:4853-62. DOI
20. Bubnova O, Khan ZU, Malti A, et al. Optimization of the thermoelectric figure of merit in the conducting polymer poly(3,4-
ethylenedioxythiophene). Nat Mater 2011;10:429-33. DOI
21. Jin Q, Jiang S, Zhao Y, et al. Flexible layer-structured Bi Te thermoelectric on a carbon nanotube scaffold. Nat Mater 2019;18:62-8.
2
3
DOI PubMed
22. Kim H, Anasori B, Gogotsi Y, Alshareef HN. Thermoelectric properties of two-dimensional molybdenum-based MXenes. Chem
Mater 2017;29:6472-9. DOI
23. Mengistie DA, Chen CH, Boopathi KM, Pranoto FW, Li LJ, Chu CW. Enhanced thermoelectric performance of PEDOT:PSS flexible
bulky papers by treatment with secondary dopants. ACS Appl Mater Interfaces 2015;7:94-100. DOI PubMed
24. Xiang J, Drzal LT. Templated growth of polyaniline on exfoliated graphene nanoplatelets (GNP) and its thermoelectric properties.
Polymer 2012;53:4202-10. DOI
25. Chelawat H, Vaddiraju S, Gleason K. Conformal, conducting poly(3,4-ethylenedioxythiophene) thin films deposited using bromine
as the oxidant in a completely dry oxidative chemical vapor deposition process. Chem Mater 2010;22:2864-8. DOI
26. Lee S, Gleason KK. Enhanced optical property with tunable band gap of cross-linked PEDOT copolymers via oxidative chemical
vapor deposition. Adv Funct Mater 2015;25:85-93. DOI
27. Hsin C, Huang C, Wu M, Cheng S, Pan R. Synthesis and thermoelectric properties of indium telluride nanowires. Mater Res Bull
2019;112:61-5. DOI
*
28. Pang J, Zhang X, Shen L, Xu J, Nie Y, Xiang G. Synthesis and thermoelectric properties of Bi-doped SnSe thin films . Chin Phys B
2021;30:116302. DOI
29. Varghese T, Dun C, Kempf N, et al. Flexible thermoelectric devices of ultrahigh power factor by scalable printing and interface
engineering. Adv Funct Mater 2020;30:1905796. DOI
30. Zeng M, Zavanelli D, Chen J, et al. Printing thermoelectric inks toward next-generation energy and thermal devices. Chem Soc Rev
2022;51:485-512. DOI
31. Kim F, Kwon B, Eom Y, et al. 3D printing of shape-conformable thermoelectric materials using all-inorganic Bi Te -based inks. Nat
2 3
Energy 2018;3:301-9. DOI
32. Hong CT, Lee W, Kang YH, et al. Effective doping by spin-coating and enhanced thermoelectric power factors in SWCNT/P3HT
hybrid films. J Mater Chem A 2015;3:12314-9. DOI
33. Choi DY, Kang HW, Sung HJ, Kim SS. Annealing-free, flexible silver nanowire-polymer composite electrodes via a continuous two-
step spray-coating method. Nanoscale 2013;5:977-83. DOI
34. Zhao X, Mai Y, Luo H, et al. Nano-MoS /poly (3,4-ethylenedioxythiophene): poly(styrenesulfonate) composite prepared by a facial
2
dip-coating process for Li-ion battery anode. Appl Surf Sci 2014;288:736-41. DOI
35. Lee SH, Park H, Son W, Choi HH, Kim JH. Novel solution-processable, dedoped semiconductors for application in thermoelectric
devices. J Mater Chem A 2014;2:13380-7. DOI
36. Xiong J, Jiang F, Zhou W, Liu C, Xu J. Highly electrical and thermoelectric properties of a PEDOT:PSS thin-film via direct dilution-
filtration. RSC Adv 2015;5:60708-12. DOI
37. Song H, Yao Y, Tang C, et al. Tunable thermoelectric properties of free-standing PEDOT nanofiber film through adjusting its
nanostructure. Synth Met 2021;275:116742. DOI
38. Ni D, Song H, Chen Y, Cai K. Free-standing highly conducting PEDOT films for flexible thermoelectric generator. Energy
2019;170:53-61. DOI
39. Xu S, Shi X, Dargusch M, Di C, Zou J, Chen Z. Conducting polymer-based flexible thermoelectric materials and devices: from
mechanisms to applications. Prog Mater Sci 2021;121:100840. DOI
40. Li M, Bai Z, Chen X, et al. Thermoelectric transport in conductive poly(3,4-ethylenedioxythiophene). Chin Phys B 2022;31:027201.
DOI

