Page 55 - Read Online
P. 55

Wang et al. Soft Sci 2023;3:34  https://dx.doi.org/10.20517/ss.2023.25          Page 23 of 26

                    2015;147:184-91.  DOI
               10.       Song  H,  Meng  Q,  Lu  Y,  Cai  K.  Progress  on  PEDOT:PSS/Nanocrystal  thermoelectric  composites.  Adv  Electron  Mater
                    2019;5:1800822.  DOI
               11.       Wang Y, Yang L, Shi XL, et al. Flexible thermoelectric materials and generators: challenges and innovations. Adv Mater
                    2019;31:e1807916.  DOI
               12.       Du Y, Xu J, Paul B, Eklund P. Flexible thermoelectric materials and devices. Appl Mater Today 2018;12:366-88.  DOI
               13.       Zhang L, Shi X, Yang Y, Chen Z. Flexible thermoelectric materials and devices: from materials to applications. Mater Today
                    2021;46:62-108.  DOI
               14.       Yang Q, Yang S, Qiu P, et al. Flexible thermoelectrics based on ductile semiconductors. Science 2022;377:854-8.  DOI
               15.       Shi X, Chen H, Hao F, et al. Room-temperature ductile inorganic semiconductor. Nat Mater 2018;17:421-6.  DOI
               16.       Hou C, Zhu M. Semiconductors flex thermoelectric power. Science 2022;377:815-6.  DOI  PubMed
               17.       Fan Z, Du D, Guan X, Ouyang J. Polymer films with ultrahigh thermoelectric properties arising from significant seebeck coefficient
                    enhancement by ion accumulation on surface. Nano Energy 2018;51:481-8.  DOI
               18.       Wang L, Zhang Z, Liu Y, et al. Exceptional thermoelectric properties of flexible organic-inorganic hybrids with monodispersed and
                    periodic nanophase. Nat Commun 2018;9:3817.  DOI  PubMed  PMC
               19.       Kim D, Park Y, Ju D, Lee G, Kwon W, Cho K. Energy-filtered acceleration of charge-carrier transport in organic thermoelectric
                    nanocomposites. Chem Mater 2021;33:4853-62.  DOI
               20.       Bubnova O, Khan ZU, Malti A, et al. Optimization of the thermoelectric figure of merit in the conducting polymer poly(3,4-
                    ethylenedioxythiophene). Nat Mater 2011;10:429-33.  DOI
               21.       Jin Q, Jiang S, Zhao Y, et al. Flexible layer-structured Bi Te  thermoelectric on a carbon nanotube scaffold. Nat Mater 2019;18:62-8.
                                                         2
                                                           3
                    DOI  PubMed
               22.       Kim H, Anasori B, Gogotsi Y, Alshareef HN. Thermoelectric properties of two-dimensional molybdenum-based MXenes. Chem
                    Mater 2017;29:6472-9.  DOI
               23.       Mengistie DA, Chen CH, Boopathi KM, Pranoto FW, Li LJ, Chu CW. Enhanced thermoelectric performance of PEDOT:PSS flexible
                    bulky papers by treatment with secondary dopants. ACS Appl Mater Interfaces 2015;7:94-100.  DOI  PubMed
               24.       Xiang J, Drzal LT. Templated growth of polyaniline on exfoliated graphene nanoplatelets (GNP) and its thermoelectric properties.
                    Polymer 2012;53:4202-10.  DOI
               25.       Chelawat H, Vaddiraju S, Gleason K. Conformal, conducting poly(3,4-ethylenedioxythiophene) thin films deposited using bromine
                    as the oxidant in a completely dry oxidative chemical vapor deposition process. Chem Mater 2010;22:2864-8.  DOI
               26.       Lee S, Gleason KK. Enhanced optical property with tunable band gap of cross-linked PEDOT copolymers via oxidative chemical
                    vapor deposition. Adv Funct Mater 2015;25:85-93.  DOI
               27.       Hsin C, Huang C, Wu M, Cheng S, Pan R. Synthesis and thermoelectric properties of indium telluride nanowires. Mater Res Bull
                    2019;112:61-5.  DOI
                                                                                                *
               28.       Pang J, Zhang X, Shen L, Xu J, Nie Y, Xiang G. Synthesis and thermoelectric properties of Bi-doped SnSe thin films . Chin Phys B
                    2021;30:116302.  DOI
               29.       Varghese T, Dun C, Kempf N, et al. Flexible thermoelectric devices of ultrahigh power factor by scalable printing and interface
                    engineering. Adv Funct Mater 2020;30:1905796.  DOI
               30.       Zeng M, Zavanelli D, Chen J, et al. Printing thermoelectric inks toward next-generation energy and thermal devices. Chem Soc Rev
                    2022;51:485-512.  DOI
               31.       Kim F, Kwon B, Eom Y, et al. 3D printing of shape-conformable thermoelectric materials using all-inorganic Bi Te -based inks. Nat
                                                                                             2  3
                    Energy 2018;3:301-9.  DOI
               32.       Hong CT, Lee W, Kang YH, et al. Effective doping by spin-coating and enhanced thermoelectric power factors in SWCNT/P3HT
                    hybrid films. J Mater Chem A 2015;3:12314-9.  DOI
               33.       Choi DY, Kang HW, Sung HJ, Kim SS. Annealing-free, flexible silver nanowire-polymer composite electrodes via a continuous two-
                    step spray-coating method. Nanoscale 2013;5:977-83.  DOI
               34.       Zhao X, Mai Y, Luo H, et al. Nano-MoS /poly (3,4-ethylenedioxythiophene): poly(styrenesulfonate) composite prepared by a facial
                                               2
                    dip-coating process for Li-ion battery anode. Appl Surf Sci 2014;288:736-41.  DOI
               35.       Lee SH, Park H, Son W, Choi HH, Kim JH. Novel solution-processable, dedoped semiconductors for application in thermoelectric
                    devices. J Mater Chem A 2014;2:13380-7.  DOI
               36.       Xiong J, Jiang F, Zhou W, Liu C, Xu J. Highly electrical and thermoelectric properties of a PEDOT:PSS thin-film via direct dilution-
                    filtration. RSC Adv 2015;5:60708-12.  DOI
               37.       Song H, Yao Y, Tang C, et al. Tunable thermoelectric properties of free-standing PEDOT nanofiber film through adjusting its
                    nanostructure. Synth Met 2021;275:116742.  DOI
               38.       Ni D, Song H, Chen Y, Cai K. Free-standing highly conducting PEDOT films for flexible thermoelectric generator. Energy
                    2019;170:53-61.  DOI
               39.       Xu S, Shi X, Dargusch M, Di C, Zou J, Chen Z. Conducting polymer-based flexible thermoelectric materials and devices: from
                    mechanisms to applications. Prog Mater Sci 2021;121:100840.  DOI
               40.       Li M, Bai Z, Chen X, et al. Thermoelectric transport in conductive poly(3,4-ethylenedioxythiophene). Chin Phys B 2022;31:027201.
                    DOI
   50   51   52   53   54   55   56   57   58   59   60