Page 56 - Read Online
P. 56
Page 24 of 26 Wang et al. Soft Sci 2023;3:34 https://dx.doi.org/10.20517/ss.2023.25
41. Song H, Cai K. Preparation and properties of PEDOT:PSS/Te nanorod composite films for flexible thermoelectric power generator.
Energy 2017;125:519-25. DOI
42. Meng Q, Song H, Du Y, Ding Y, Cai K. Facile preparation of poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate)/Ag Te
2
nanorod composite films for flexible thermoelectric generator. J Materiomics 2021;7:302-9. DOI
43. Lu Y, Ding Y, Qiu Y, et al. Good performance and flexible PEDOT:PSS/Cu Se nanowire thermoelectric composite films. ACS Appl
2
Mater Interfaces 2019;11:12819-29. DOI PubMed
44. Lu Y, Li X, Cai K, et al. Enhanced-performance PEDOT:PSS/Cu Se-based composite films for wearable thermoelectric power
2
generators. ACS Appl Mater Interfaces 2021;13:631-8. DOI PubMed
45. Du Y, Liu X, Xu J, Shen SZ. Flexible Bi-Te-based alloy nanosheet/PEDOT:PSS thermoelectric power generators. Mater Chem Front
2019;3:1328-34. DOI
46. Liu D, Yan Z, Zhao Y, et al. Facile self-supporting and flexible Cu2S/PEDOT:PSS composite thermoelectric film with high
thermoelectric properties for body energy harvesting. Results Phys 2021;31:105061. DOI
47. Yan Z, Zhao Y, Liu D, et al. Thermoelectric properties of flexible PEDOT:PSS-based films tuned by SnSe via the vacuum filtration
method. RSC Adv 2020;10:43840-6. DOI PubMed PMC
48. Jiang F, Xiong J, Zhou W, et al. Use of organic solvent-assisted exfoliated MoS for optimizing the thermoelectric performance of
2
flexible PEDOT:PSS thin films. J Mater Chem A 2016;4:5265-73. DOI
49. Wang X, Meng F, Wang T, et al. High performance of PEDOT:PSS/SiC-NWs hybrid thermoelectric thin film for energy harvesting.
J Alloys Compd 2018;734:121-9. DOI
50. Liu E, Liu C, Zhu Z, et al. Preparation of poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate)/silicon dioxide nanoparticles
composite films with large thermoelectric power factor. J Compos Mater 2018;52:621-7. DOI
51. Tian Z, Liu H, Wang N, Liu Y, Zhang X. Facile preparation and thermoelectric properties of PEDOT nanowires/Bi Te
2 3
nanocomposites. J Mater Sci Mater Electron 2018;29:17367-73. DOI
52. Liu H, Liu P, Zhang M, et al. Properties of PEDOT nanowire/Te nanowire nanocomposites and fabrication of a flexible
thermoelectric generator. RSC Adv 2020;10:33965-71. DOI PubMed PMC
53. Xiong J, Wang L, Xu J, et al. Thermoelectric performance of PEDOT:PSS/Bi2Te3-nanowires: a comparison of hybrid types. J Mater
Sci Mater Electron 2016;27:1769-76. DOI
54. Wu Q, Zha K, Zhang J, Zhang J, Hai J, Lu Z. SnS/PEDOT:PSS composite films with enhanced surface conductivities induced by
solution post-treatment and their application in flexible thermoelectric. Org Electron 2023;118:106799. DOI
55. Li H, Liang Y, Liu S, Qiao F, Li P, He C. Modulating carrier transport for the enhanced thermoelectric performance of carbon
nanotubes/polyaniline composites. Org Electron 2019;69:62-8. DOI
56. Wang L, Yao Q, Bi H, Huang F, Wang Q, Chen L. PANI/graphene nanocomposite films with high thermoelectric properties by
enhanced molecular ordering. J Mater Chem A 2015;3:7086-92. DOI
57. Hsieh YY, Zhang Y, Zhang L, et al. High thermoelectric power-factor composites based on flexible three-dimensional graphene and
polyaniline. Nanoscale 2019;11:6552-60. DOI
58. Xiong J, Jiang F, Shi H, et al. Liquid exfoliated graphene as dopant for improving the thermoelectric power factor of conductive
PEDOT:PSS nanofilm with hydrazine treatment. ACS Appl Mater Interfaces 2015;7:14917-25. DOI
59. Jiang Q, Lan X, Liu C, et al. High-performance hybrid organic thermoelectric SWNTs/PEDOT:PSS thin-films for energy harvesting.
Mater Chem Front 2018;2:679-85. DOI
60. Zhang Z, Chen G, Wang H, Li X. Template-directed in situ polymerization preparation of nanocomposites of PEDOT:PSS-coated
multi-walled carbon nanotubes with enhanced thermoelectric property. Chem Asian J 2015;10:149-53. DOI
61. Song H, Liu C, Xu J, Jiang Q, Shi H. Fabrication of a layered nanostructure PEDOT:PSS/SWCNTs composite and its thermoelectric
performance. RSC Adv 2013;3:22065-71. DOI
62. Liu X, Du Y, Meng Q, Shen SZ, Xu J. Flexible thermoelectric power generators fabricated using graphene/PEDOT:PSS
nanocomposite films. J Mater Sci Mater Electron 2019;30:20369-75. DOI
63. Du Y, Shi Y, Meng Q, Shen SZ. Preparation and thermoelectric properties of flexible SWCNT/PEDOT:PSS composite film. Synth
Met 2020;261:116318. DOI
64. Deng W, Deng L, Li Z, Zhang Y, Chen G. Synergistically boosting thermoelectric performance of PEDOT:PSS/SWCNT composites
via the ion-exchange effect and promoting SWCNT dispersion by the ionic liquid. ACS Appl Mater Interfaces 2021;13:12131-40.
DOI PubMed
65. Huang J, Liu X, Du Y. Fabrication of free-standing flexible and highly efficient carbon nanotube film/PEDOT: PSS thermoelectric
composites. J Materiomics 2022;8:1213-7. DOI
66. Wang P, Liao Y, Lai Y, et al. Conversion of pristine and p-doped sulfuric-acid-treated single-walled carbon nanotubes to n-type
materials by a facile hydrazine vapor exposure process. Mater Chem Phys 2012;134:325-32. DOI
67. Wang H, Hsu JH, Yi SI, et al. Thermally driven large N-type voltage responses from hybrids of carbon nanotubes and poly(3,4-
ethylenedioxythiophene) with tetrakis(dimethylamino)ethylene. Adv Mater 2015;27:6855-61. DOI
68. Song H, Qiu Y, Wang Y, et al. Polymer/carbon nanotube composite materials for flexible thermoelectric power generator. Compos
Sci Technol 2017;153:71-83. DOI
69. Liang L, Gao C, Chen G, Guo C. Large-area, stretchable, super flexible and mechanically stable thermoelectric films of polymer/
carbon nanotube composites. J Mater Chem C 2016;4:526-32. DOI

