Page 59 - Read Online
P. 59
Wei et al. Soft Sci 2023;3:17 https://dx.doi.org/10.20517/ss.2023.09 Page 31 of 38
REFERENCES
1. Ilderem V. The technology underpinning 5G. Nat Electron 2020;3:5-6. DOI
2. Shi Q, Yang Y, Sun Z, Lee C. Progress of advanced devices and internet of things systems as enabling technologies for smart homes
and health care. ACS Mater Au 2022;2:394-435. DOI PubMed PMC
3. Xiao X, Fang Y, Xiao X, Xu J, Chen J. Machine-learning-aided self-powered assistive physical therapy devices. ACS Nano
2021;15:18633-46. DOI
4. Heng W, Solomon S, Gao W. Flexible electronics and devices as human-machine interfaces for medical robotics. Adv Mater
2022;34:e2107902. DOI PubMed PMC
5. Yu Y, Li J, Solomon SA, et al. All-printed soft human-machine interface for robotic physicochemical sensing. Sci Robot
2022;7:eabn0495. DOI PubMed PMC
6. Wang K, Yap LW, Gong S, Wang R, Wang SJ, Cheng W. Nanowire-based soft wearable human-machine interfaces for future virtual
and augmented reality applications. Adv Funct Mater 2021;31:2008347. DOI
7. Duan S, Shi Q, Hong J, et al. Water-modulated biomimetic hyper-attribute-gel electronic skin for robotics and skin-attachable
wearables. ACS Nano ;2023:1355-71. DOI
8. Sun Z, Zhu M, Shan X, Lee C. Augmented tactile-perception and haptic-feedback rings as human-machine interfaces aiming for
immersive interactions. Nat Commun 2022;13:5224. DOI PubMed PMC
9. Alagumalai A, Shou W, Mahian O, et al. Self-powered sensing systems with learning capability. Joule 2022;6:1475-500. DOI
10. Yu X, Xie Z, Yu Y, et al. Skin-integrated wireless haptic interfaces for virtual and augmented reality. Nature 2019;575:473-9. DOI
11. Yang JC, Mun J, Kwon SY, Park S, Bao Z, Park S. Electronic skin: recent progress and future prospects for skin-attachable devices
for health monitoring, robotics, and prosthetics. Adv Mater 2019;31:e1904765. DOI PubMed
12. Yin R, Wang D, Zhao S, Lou Z, Shen G. Wearable sensors-enabled human-machine interaction systems: from design to application.
Adv Funct Mater 2021;31:2008936. DOI
13. Wei X, Li H, Yue W, et al. A high-accuracy, real-time, intelligent material perception system with a machine-learning-motivated
pressure-sensitive electronic skin. Matter 2022;5:1481-501. DOI
14. Duan S, Yang H, Hong J, et al. A skin-beyond tactile sensor as interfaces between the prosthetics and biological systems. Nano
Energy 2022;102:107665. DOI
15. Zhu M, Sun Z, Chen T, Lee C. Low cost exoskeleton manipulator using bidirectional triboelectric sensors enhanced multiple degree
of freedom sensory system. Nat Commun 2021;12:2692. DOI PubMed PMC
16. Guo X, He T, Zhang Z, et al. Artificial intelligence-enabled caregiving walking stick powered by ultra-low-frequency human motion.
ACS Nano 2021;15:19054-69. DOI
17. Niu H, Li H, Li Y, et al. Cocklebur-inspired “branch-seed-spininess” 3D hierarchical structure bionic electronic skin for intelligent
perception. Nano Energy 2023;107:108144. DOI
18. Shi Z, Meng L, Shi X, et al. Morphological engineering of sensing materials for flexible pressure sensors and artificial intelligence
applications. Nanomicro Lett 2022;14:141. DOI PubMed PMC
19. Niu H, Li H, Gao S, et al. Perception-to-cognition tactile sensing based on artificial-intelligence-motivated human full-skin bionic
electronic skin. Adv Mater 2022;34:e2202622. DOI
20. Sim K, Rao Z, Zou Z, et al. Metal oxide semiconductor nanomembrane-based soft unnoticeable multifunctional electronics for
wearable human-machine interfaces. Sci Adv 2019;5:eaav9653. DOI PubMed PMC
21. Niu H, Zhang H, Yue W, et al. Micro-nano processing of active layers in flexible tactile sensors via template methods: a review.
Small 2021;17:e2100804. DOI
22. Xiong J, Chen J, Lee PS. Functional fibers and fabrics for soft robotics, wearables, and human-robot interface. Adv Mater
2021;33:e2002640. DOI PubMed
23. Liu S, Ma K, Yang B, Li H, Tao X. Textile electronics for VR/AR applications. Adv Funct Mater 2021;31:2007254. DOI
24. Shi X, Zuo Y, Zhai P, et al. Large-area display textiles integrated with functional systems. Nature 2021;591:240-5. DOI
25. Shen S, Yi J, Sun Z, et al. Human machine interface with wearable electronics using biodegradable triboelectric films for calligraphy
practice and correction. Nanomicro Lett 2022;14:225. DOI PubMed PMC
26. He J, Lu C, Jiang H, et al. Scalable production of high-performing woven lithium-ion fibre batteries. Nature 2021;597:57-63. DOI
27. Wu R, Liu S, Lin Z, Zhu S, Ma L, Wang ZL. Industrial fabrication of 3D braided stretchable hierarchical interlocked fancy-yarn
triboelectric nanogenerator for self-powered smart fitness system. Adv Energy Mater 2022;12:2201288. DOI
28. Gaubert V, Vauche G, Weimmerskirch-Aubatin J, et al. Toward autonomous wearable triboelectric systems integrated on textiles.
iScience 2022;25:105264. DOI PubMed PMC
29. Zhang Y, Zhou J, Zhang Y, Zhang D, Yong KT, Xiong J. Elastic fibers/fabrics for wearables and bioelectronics. Adv Sci
2022;9:e2203808. DOI PubMed PMC
30. Xu F, Jin X, Lan C, et al. 3D arch-structured and machine-knitted triboelectric fabrics as self-powered strain sensors of smart textiles.
Nano Energy 2023;109:108312. DOI
31. Zhi C, Shi S, Zhang S, et al. Bioinspired all-fibrous directional moisture-wicking electronic skins for biomechanical energy
harvesting and all-range health sensing. Nanomicro Lett 2023;15:60. DOI PubMed PMC
32. Wang L, Tian M, Qi X, et al. Customizable textile sensors based on helical core-spun yarns for seamless smart garments. Langmuir

