Page 61 - Read Online
P. 61

Wei et al. Soft Sci 2023;3:17  https://dx.doi.org/10.20517/ss.2023.09           Page 33 of 38

               63.       Chen Y, Deng Z, Ouyang R, et al. 3D printed stretchable smart fibers and textiles for self-powered e-skin. Nano Energy
                    2021;84:105866.  DOI
               64.       Khan AQ, Yu K, Li J, et al. Spider silk supercontraction-inspired cotton-hydrogel self-adapting textiles. Adv Fiber Mater
                    2022;4:1572-83.  DOI
               65.       Gan L, Zeng Z, Lu H, et al. A large-scalable spraying-spinning process for multifunctional electronic yarns. SmartMat 2023:4.  DOI
               66.       Mi H, Zhong L, Tang X, et al. Electroluminescent fabric woven by ultrastretchable fibers for arbitrarily controllable pattern display.
                    ACS Appl Mater Interf 2021;13:11260-7.  DOI
               67.       Park Y, Park M, Lee J. Reduced graphene oxide-based artificial synapse yarns for wearable textile device applications. Adv Funct
                    Mater 2018;28:1804123.  DOI
               68.       Chen C, Chen L, Wu Z, et al. 3D double-faced interlock fabric triboelectric nanogenerator for bio-motion energy harvesting and as
                    self-powered stretching and 3D tactile sensors. Mater Today 2020;32:84-93.  DOI
               69.       Park J, Choi AY, Lee CJ, Kim D, Kim YT. Highly stretchable fiber-based single-electrode triboelectric nanogenerator for wearable
                    devices. RSC Adv 2017;7:54829-34.  DOI
               70.       Liu R, Li J, Li M, et al. MXene-coated air-permeable pressure-sensing fabric for smart wear. ACS Appl Mater Interf 2020;12:46446-
                    54.  DOI
               71.       Kim J, Kim W, Jang G, Hyeon DS, Park MH, Hong JP. 1D stretchable block copolymer yarn-based energy harvesters via BaTiO /
                                                                                                         3
                    polydimethylsiloxane composite-carbon conductive ink. Adv Energy Mater 2020;10:1903217.  DOI
               72.       Jing T, Xu B, Xin JH, Guan X, Yang Y. Series to parallel structure of electrode fiber: an effective method to remarkably reduce inner
                    resistance of triboelectric nanogenerator textiles. J Mater Chem A 2021;9:12331-9.  DOI
               73.       Wang W, Yu A, Liu X, et al. Large-scale fabrication of robust textile triboelectric nanogenerators. Nano Energy 2020;71:104605.
                    DOI
               74.       Li L, Wang K, Fan H, et al. Scalable fluid-spinning nanowire-based inorganic semiconductor yarns for electrochromic actuators.
                    Mater Horiz 2021;8:1711-21.  DOI
               75.       Gao Y, Li Z, Xu B, et al. Scalable core-spun coating yarn-based triboelectric nanogenerators with hierarchical structure for wearable
                    energy harvesting and sensing via continuous manufacturing. Nano Energy 2022;91:106672.  DOI
               76.       Yang Y, Xu B, Gao Y, Li M. Conductive composite fiber with customizable functionalities for energy harvesting and electronic
                    textiles. ACS Appl Mater Interf 2021;13:49927-35.  DOI
               77.       He Q, Wu Y, Feng Z, et al. An all-textile triboelectric sensor for wearable teleoperated human-machine interaction. J Mater Chem A
                    2019;7:26804-11.  DOI
               78.       Tang J, Wu Y, Ma S, Yan T, Pan Z. Flexible strain sensor based on CNT/TPU composite nanofiber yarn for smart sports bandage.
                    Compos B Eng 2022;232:109605.  DOI
               79.       Zhou M, Xu F, Ma L, et al. Continuously fabricated nano/micro aligned fiber based waterproof and breathable fabric triboelectric
                    nanogenerators for self-powered sensing systems. Nano Energy 2022;104:107885.  DOI
               80.       Pinto TV, Fernandes DM, Guedes A, et al. Photochromic polypropylene fibers based on UV-responsive silica@phosphomolybdate
                    nanoparticles through melt spinning technology. Chem Eng J 2018;350:856-66.  DOI
               81.       Choi W, Kwon Y, Yu W, Kim DW. Graphite fiber electrode by continuous wet-spinning. ACS Appl Energy Mater 2022;5:8963-72.
                    DOI
               82.       Zhang D, Yang W, Gong W, et al. Abrasion resistant/waterproof stretchable triboelectric yarns based on fermat spirals. Adv Mater
                    2021;33:e2100782.  DOI
               83.       Ma L, Zhou M, Wu R, et al. Continuous and scalable manufacture of hybridized nano-micro triboelectric yarns for energy harvesting
                    and signal sensing. ACS Nano 2020;14:4716-26.  DOI
               84.       Probst H, Katzer K, Nocke A, Hickmann R, Zimmermann M, Cherif C. Melt spinning of highly stretchable, electrically conductive
                    filament yarns. Polymers 2021;13:590.  DOI  PubMed  PMC
               85.       Wang Q, Ma W, Yin E, et al. Melt spinning of low-cost activated carbon fiber with a tunable pore structure for high-performance
                    flexible supercapacitors. ACS Appl Energy Mater 2020;3:9360-8.  DOI
               86.       Cho SY, Yu H, Choi J, et al. Continuous meter-scale synthesis of weavable tunicate cellulose/carbon nanotube fibers for high-
                    performance wearable sensors. ACS Nano 2019;13:9332-41.  DOI
               87.       Dong C, Leber A, Das Gupta T, et al. High-efficiency super-elastic liquid metal based triboelectric fibers and textiles. Nat Commun
                    2020;11:3537.  DOI  PubMed  PMC
               88.       Loke G, Khudiyev T, Wang B, et al. Digital electronics in fibres enable fabric-based machine-learning inference. Nat Commun
                    2021;12:3317.  DOI  PubMed  PMC
               89.       Wang Z, Wu T, Wang Z, et al. Designer patterned functional fibers via direct imprinting in thermal drawing. Nat Commun
                    2020;11:3842.  DOI  PubMed  PMC
               90.       Yan W, Dong C, Xiang Y, et al. Thermally drawn advanced functional fibers: new frontier of flexible electronics. Mater Today
                    2020;35:168-94.  DOI
               91.       Marion JS, Gupta N, Cheung H, Monir K, Anikeeva P, Fink Y. Thermally drawn highly conductive fibers with controlled elasticity.
                    Adv Mater 2022;34:e2201081.  DOI  PubMed
               92.       Zhang T, Li K, Zhang J, et al. High-performance, flexible, and ultralong crystalline thermoelectric fibers. Nano Energy 2017;41:35-
                    42.  DOI
   56   57   58   59   60   61   62   63   64   65   66