Page 63 - Read Online
P. 63
Wei et al. Soft Sci 2023;3:17 https://dx.doi.org/10.20517/ss.2023.09 Page 35 of 38
2022;8:eabq2521. DOI PubMed PMC
123. Yin L, Cao M, Kim KN, et al. A stretchable epidermal sweat sensing platform with an integrated printed battery and electrochromic
display. Nat Electron 2022;5:694-705. DOI
124. Wang M, Yang Y, Min J, et al. A wearable electrochemical biosensor for the monitoring of metabolites and nutrients. Nat Biomed
Eng 2022;6:1225-35. DOI
125. Sempionatto JR, Lasalde-ramírez JA, Mahato K, Wang J, Gao W. Wearable chemical sensors for biomarker discovery in the omics
era. Nat Rev Chem 2022;6:899-915. DOI PubMed
126. Zhang T, Ding Y, Hu C, et al. Self-powered stretchable sensor arrays exhibiting magnetoelasticity for real-time human-machine
interaction. Adv Mater 2022:e2203786. DOI
127. Zhao Y, Gao S, Zhang X, et al. Fully flexible electromagnetic vibration sensors with annular field confinement origami magnetic
membranes. Adv Funct Mater 2020;30:2001553. DOI
128. Chen K, Li Y, Du Z, et al. CoFe O embedded bacterial cellulose for flexible, biodegradable, and self-powered electromagnetic
2
4
sensor. Nano Energy 2022;102:107740. DOI
129. Chen L, Chen C, Jin L, et al. Stretchable negative Poisson’s ratio yarn for triboelectric nanogenerator for environmental energy
harvesting and self-powered sensor. Energy Environ Sci 2021;14:955-64. DOI
130. Anwar S, Hassanpour Amiri M, Jiang S, Abolhasani MM, Rocha PRF, Asadi K. Piezoelectric nylon-11 fibers for electronic textiles,
energy harvesting and sensing. Adv Funct Mater 2021;31:2004326. DOI
131. Cherenack K, Zysset C, Kinkeldei T, Münzenrieder N, Tröster G. Woven electronic fibers with sensing and display functions for
smart textiles. Adv Mater 2010;22:5178-82. DOI PubMed
132. Yin F, Yang J, Peng H, Yuan W. Flexible and highly sensitive artificial electronic skin based on graphene/polyamide interlocking
fabric. J Mater Chem C 2018;6:6840-6. DOI
133. Song Y, Huang W, Mu C, et al. Carbon nanotube-modified fabric for wearable smart electronic-skin with exclusive normal-tangential
force sensing ability. Adv Mater Technol 2019;4:1800680. DOI
134. Yu Q, Su C, Bi S, et al. Ti C T @nonwoven fabric composite: promising MXene-coated fabric for wearable piezoresistive pressure
3 2 x
sensors. ACS Appl Mater Interf 2022;14:9632-43. DOI
135. Atalay O, Kennon WR, Husain MD. Textile-based weft knitted strain sensors: effect of fabric parameters on sensor properties.
Sensors 2013;13:11114-27. DOI PubMed PMC
136. Cai G, Yang M, Xu Z, Liu J, Tang B, Wang X. Flexible and wearable strain sensing fabrics. Chem Eng J 2017;325:396-403. DOI
137. Husain MD, Kennon R, Dias T. Design and fabrication of temperature sensing fabric. J Ind Text 2014;44:398-417. DOI
138. Xing H, Li X, Lu Y, et al. MXene/MWCNT electronic fabric with enhanced mechanical robustness on humidity sensing for real-time
respiration monitoring. Sens Actuators B Chem 2022;361:131704. DOI
139. Rauf S, Vijjapu MT, Andrés MA, et al. Highly selective metal-organic framework textile humidity sensor. ACS Appl Mater Interf
2020;12:29999-30006. DOI PubMed PMC
140. Ma L, Wu R, Patil A, et al. Full-textile wireless flexible humidity sensor for human physiological monitoring. Adv Funct Mater
2019;29:1904549. DOI
141. Nan N, He J, You X, et al. A stretchable, highly sensitive, and multimodal mechanical fabric sensor based on electrospun conductive
nanofiber yarn for wearable electronics. Adv Mater Technol 2019;4:1800338. DOI
142. Ge J, Sun L, Zhang FR, et al. A stretchable electronic fabric artificial skin with pressure-, lateral strain-, and flexion-sensitive
properties. Adv Mater 2016;28:722-8. DOI
143. Kim T, Park C, Samuel EP, et al. Supersonically sprayed washable, wearable, stretchable, hydrophobic, and antibacterial rGO/AgNW
fabric for multifunctional sensors and supercapacitors. ACS Appl Mater Interf 2021;13:10013-25. DOI
144. Zhou Z, Chen K, Li X, et al. Sign-to-speech translation using machine-learning-assisted stretchable sensor arrays. Nat Electron
2020;3:571-8. DOI
145. Cheng B, Wu P. Scalable fabrication of kevlar/Ti C T MXene intelligent wearable fabrics with multiple sensory capabilities. ACS
3 2 x
Nano 2021;15:8676-85. DOI PubMed
146. Wu R, Ma L, Hou C, et al. Silk composite electronic textile sensor for high space precision 2D combo temperature-pressure sensing.
Small 2019;15:e1901558. DOI
147. Yang S, Li C, Wen N, et al. All-fabric-based multifunctional textile sensor for detection and discrimination of humidity, temperature,
and strain stimuli. J Mater Chem C 2021;9:13789-98. DOI
148. Su Y, Chen C, Pan H, et al. Muscle fibers inspired high-performance piezoelectric textiles for wearable physiological monitoring.
Adv Funct Mater 2021;31:2010962. DOI
149. Chen J, Zhang J, Hu J, et al. Ultrafast-response/recovery flexible piezoresistive sensors with DNA-like double helix yarns for
epidermal pulse monitoring. Adv Mater 2022;34:e2104313. DOI
150. Kim SJ, Kim H, Ahn J, et al. A new architecture for fibrous organic transistors based on a double-stranded assembly of electrode
microfibers for electronic textile applications. Adv Mater 2019;31:e1900564. DOI
151. Lee HJ, Hwang SH, Yoon HN, Lee WK, Park KS. Heart rate variability monitoring during sleep based on capacitively coupled textile
electrodes on a bed. Sensors 2015;15:11295-311. DOI PubMed PMC
152. Bashir T, Ali M, Persson N, Ramamoorthy SK, Skrifvars M. Stretch sensing properties of conductive knitted structures of PEDOT-
coated viscose and polyester yarns. Text Res J 2014;84:323-34. DOI

