Page 63 - Read Online
P. 63

Wei et al. Soft Sci 2023;3:17  https://dx.doi.org/10.20517/ss.2023.09           Page 35 of 38

                    2022;8:eabq2521.  DOI  PubMed  PMC
               123.      Yin L, Cao M, Kim KN, et al. A stretchable epidermal sweat sensing platform with an integrated printed battery and electrochromic
                    display. Nat Electron 2022;5:694-705.  DOI
               124.      Wang M, Yang Y, Min J, et al. A wearable electrochemical biosensor for the monitoring of metabolites and nutrients. Nat Biomed
                    Eng 2022;6:1225-35.  DOI
               125.      Sempionatto JR, Lasalde-ramírez JA, Mahato K, Wang J, Gao W. Wearable chemical sensors for biomarker discovery in the omics
                    era. Nat Rev Chem 2022;6:899-915.  DOI  PubMed
               126.      Zhang T, Ding Y, Hu C, et al. Self-powered stretchable sensor arrays exhibiting magnetoelasticity for real-time human-machine
                    interaction. Adv Mater 2022:e2203786.  DOI
               127.      Zhao Y, Gao S, Zhang X, et al. Fully flexible electromagnetic vibration sensors with annular field confinement origami magnetic
                    membranes. Adv Funct Mater 2020;30:2001553.  DOI
               128.      Chen K, Li Y, Du Z, et al. CoFe O  embedded bacterial cellulose for flexible, biodegradable, and self-powered electromagnetic
                                          2
                                            4
                    sensor. Nano Energy 2022;102:107740.  DOI
               129.      Chen L, Chen C, Jin L, et al. Stretchable negative Poisson’s ratio yarn for triboelectric nanogenerator for environmental energy
                    harvesting and self-powered sensor. Energy Environ Sci 2021;14:955-64.  DOI
               130.      Anwar S, Hassanpour Amiri M, Jiang S, Abolhasani MM, Rocha PRF, Asadi K. Piezoelectric nylon-11 fibers for electronic textiles,
                    energy harvesting and sensing. Adv Funct Mater 2021;31:2004326.  DOI
               131.      Cherenack K, Zysset C, Kinkeldei T, Münzenrieder N, Tröster G. Woven electronic fibers with sensing and display functions for
                    smart textiles. Adv Mater 2010;22:5178-82.  DOI  PubMed
               132.      Yin F, Yang J, Peng H, Yuan W. Flexible and highly sensitive artificial electronic skin based on graphene/polyamide interlocking
                    fabric. J Mater Chem C 2018;6:6840-6.  DOI
               133.      Song Y, Huang W, Mu C, et al. Carbon nanotube-modified fabric for wearable smart electronic-skin with exclusive normal-tangential
                    force sensing ability. Adv Mater Technol 2019;4:1800680.  DOI
               134.      Yu Q, Su C, Bi S, et al. Ti C T @nonwoven fabric composite: promising MXene-coated fabric for wearable piezoresistive pressure
                                     3  2 x
                    sensors. ACS Appl Mater Interf 2022;14:9632-43.  DOI
               135.      Atalay O, Kennon WR, Husain MD. Textile-based weft knitted strain sensors: effect of fabric parameters on sensor properties.
                    Sensors 2013;13:11114-27.  DOI  PubMed  PMC
               136.      Cai G, Yang M, Xu Z, Liu J, Tang B, Wang X. Flexible and wearable strain sensing fabrics. Chem Eng J 2017;325:396-403.  DOI
               137.      Husain MD, Kennon R, Dias T. Design and fabrication of temperature sensing fabric. J Ind Text 2014;44:398-417.  DOI
               138.      Xing H, Li X, Lu Y, et al. MXene/MWCNT electronic fabric with enhanced mechanical robustness on humidity sensing for real-time
                    respiration monitoring. Sens Actuators B Chem 2022;361:131704.  DOI
               139.      Rauf S, Vijjapu MT, Andrés MA, et al. Highly selective metal-organic framework textile humidity sensor. ACS Appl Mater Interf
                    2020;12:29999-30006.  DOI  PubMed  PMC
               140.      Ma L, Wu R, Patil A, et al. Full-textile wireless flexible humidity sensor for human physiological monitoring. Adv Funct Mater
                    2019;29:1904549.  DOI
               141.      Nan N, He J, You X, et al. A stretchable, highly sensitive, and multimodal mechanical fabric sensor based on electrospun conductive
                    nanofiber yarn for wearable electronics. Adv Mater Technol 2019;4:1800338.  DOI
               142.      Ge J, Sun L, Zhang FR, et al. A stretchable electronic fabric artificial skin with pressure-, lateral strain-, and flexion-sensitive
                    properties. Adv Mater 2016;28:722-8.  DOI
               143.      Kim T, Park C, Samuel EP, et al. Supersonically sprayed washable, wearable, stretchable, hydrophobic, and antibacterial rGO/AgNW
                    fabric for multifunctional sensors and supercapacitors. ACS Appl Mater Interf 2021;13:10013-25.  DOI
               144.      Zhou Z, Chen K, Li X, et al. Sign-to-speech translation using machine-learning-assisted stretchable sensor arrays. Nat Electron
                    2020;3:571-8.  DOI
               145.      Cheng B, Wu P. Scalable fabrication of kevlar/Ti C T  MXene intelligent wearable fabrics with multiple sensory capabilities. ACS
                                                    3  2  x
                    Nano 2021;15:8676-85.  DOI  PubMed
               146.      Wu R, Ma L, Hou C, et al. Silk composite electronic textile sensor for high space precision 2D combo temperature-pressure sensing.
                    Small 2019;15:e1901558.  DOI
               147.      Yang S, Li C, Wen N, et al. All-fabric-based multifunctional textile sensor for detection and discrimination of humidity, temperature,
                    and strain stimuli. J Mater Chem C 2021;9:13789-98.  DOI
               148.      Su Y, Chen C, Pan H, et al. Muscle fibers inspired high-performance piezoelectric textiles for wearable physiological monitoring.
                    Adv Funct Mater 2021;31:2010962.  DOI
               149.      Chen J, Zhang J, Hu J, et al. Ultrafast-response/recovery flexible piezoresistive sensors with DNA-like double helix yarns for
                    epidermal pulse monitoring. Adv Mater 2022;34:e2104313.  DOI
               150.      Kim SJ, Kim H, Ahn J, et al. A new architecture for fibrous organic transistors based on a double-stranded assembly of electrode
                    microfibers for electronic textile applications. Adv Mater 2019;31:e1900564.  DOI
               151.      Lee HJ, Hwang SH, Yoon HN, Lee WK, Park KS. Heart rate variability monitoring during sleep based on capacitively coupled textile
                    electrodes on a bed. Sensors 2015;15:11295-311.  DOI  PubMed  PMC
               152.      Bashir T, Ali M, Persson N, Ramamoorthy SK, Skrifvars M. Stretch sensing properties of conductive knitted structures of PEDOT-
                    coated viscose and polyester yarns. Text Res J 2014;84:323-34.  DOI
   58   59   60   61   62   63   64   65   66   67   68