Page 150 - Read Online
P. 150

Tian et al. Soft Sci 2023;3:30  https://dx.doi.org/10.20517/ss.2023.21          Page 25 of 27

               40.       Liu M, Pu X, Jiang C, et al. Large-area all-textile pressure sensors for monitoring human motion and physiological signals. Adv
                    Mater 2017;29:1703700.  DOI
               41.       Souri H, Bhattacharyya D. Highly stretchable multifunctional wearable devices based on conductive cotton and wool fabrics. ACS
                    Appl Mater Interfaces 2018;10:20845-53.  DOI  PubMed
               42.       Tobjörk D, Österbacka R. Paper electronics. Adv Mater 2011;23:1935-61.  DOI  PubMed
               43.       Zou  B,  Chen  Y,  Liu  Y,  et  al.  Repurposed  leather  with  sensing  capabilities  for  multifunctional  electronic  skin.  Adv  Sci
                    2019;6:1801283.  DOI  PubMed  PMC
               44.       Savagatrup S, Printz AD, O’connor TF, Zaretski AV, Lipomi DJ. Molecularly stretchable electronics. Chem Mater 2014;26:3028-41.
                    DOI
               45.       Rajendran V, Mohan A, Jayaraman M, Nakagawa T. All-printed, interdigitated, freestanding serpentine interconnects based flexible
                    solid state supercapacitor for self powered wearable electronics. Nano Energy 2019;65:104055.  DOI
               46.       Yamamoto M, Karasawa R, Okuda S, Takamatsu S, Itoh T. Long wavy copper stretchable interconnects fabricated by continuous
                    microcorrugation process for wearable applications. Eng Rep 2020;2:e12143.  DOI
               47.       Ndolomingo MJ, Bingwa N, Meijboom R. Review of supported metal nanoparticles: synthesis methodologies, advantages and
                    application as catalysts. J Mater Sci 2020;55:6195-241.  DOI
               48.       Araki T, Uemura T, Yoshimoto S, et al. Wireless monitoring using a stretchable and transparent sensor sheet containing metal
                    nanowires. Adv Mater 2020;32:e1902684.  DOI
               49.       Wu G, Han X, Cai J, et al. In-plane strain engineering in ultrathin noble metal nanosheets boosts the intrinsic electrocatalytic
                    hydrogen evolution activity. Nat Commun 2022;13:4200.  DOI  PubMed  PMC
               50.       Lipomi DJ, Vosgueritchian M, Tee BC, et al. Skin-like pressure and strain sensors based on transparent elastic films of carbon
                    nanotubes. Nat Nanotechnol 2011;6:788-92.  DOI
               51.       Razaq A, Bibi F, Zheng X, Papadakis R, Jafri SHM, Li H. Review on graphene-, graphene oxide-, reduced graphene oxide-based
                    flexible composites: from fabrication to applications. Materials 2022;15:1012.  DOI  PubMed  PMC
               52.       Wang Y, Zhu C, Pfattner R, et al. A highly stretchable, transparent, and conductive polymer. Sci Adv 2017;3:e1602076.  DOI
                    PubMed  PMC
               53.       Wang M, Tang XH, Cai JH, Wu H, Shen JB, Guo SY. Construction, mechanism and prospective of conductive polymer composites
                    with multiple interfaces for electromagnetic interference shielding: a review. Carbon 2021;177:377-402.  DOI
               54.       Vo TT, Lee HJ, Kim SY, Suk JW. Synergistic effect of graphene/silver nanowire hybrid fillers on highly stretchable strain sensors
                    based on spandex composites. Nanomaterials 2020;10:2063.  DOI  PubMed  PMC
               55.       Liu Y, Liu J, Chen S, et al. Soft and elastic hydrogel-based microelectronics for localized low-voltage neuromodulation. Nat Biomed
                    Eng 2019;3:58-68.  DOI
               56.       Gao Y, Ota H, Schaler EW, et al. Wearable Microfluidic Diaphragm Pressure Sensor for Health and Tactile Touch Monitoring. Adv
                    Mater 2017;29:1701985.  DOI
               57.       Luo Y, Abidian MR, Ahn JH, et al. Technology Roadmap for Flexible Sensors. ACS Nano 2023;17:5211-95.  DOI  PubMed
               58.       Mishra RB, El atab N, Hussain AM, Hussain MM. Recent progress on flexible capacitive pressure sensors: from design and
                    materials to applications. Adv Mater Technol 2021;6:2001023.  DOI
               59.       Huang Y, Fan X, Chen S, Zhao N. Emerging technologies of flexible pressure sensors: materials, modeling, devices, and
                    manufacturing. Adv Funct Mater 2019;29:1808509.  DOI
               60.        Chen W, Yan X. Progress in achieving high-performance piezoresistive and capacitive flexible pressure sensors: a review. J Mater
                    Sci Technol 2020;43:175-88.  DOI
               61.       Yu A, Zhu Y, Wang W, Zhai J. Progress in triboelectric materials: toward high performance and widespread applications. Adv Funct
                    Mater 2019;29:1900098.  DOI
               62.       Yang L, Chen Z, Dargusch MS, Zou J. High performance thermoelectric materials: progress and their applications. Adv Energy Mater
                    2018;8:1701797.  DOI
               63.      Zhang D, Wu H, Bowen CR, Yang Y. Recent advances in pyroelectric materials and applications. Small 2021;17:e2103960.  DOI
               64.       Dinh T, Phan H, Qamar A, Woodfield P, Nguyen N, Dao DV. Thermoresistive effect for advanced thermal sensors: fundamentals,
                    design considerations, and applications. J Microelectromech S 2017;26:966-86.  DOI
               65.       He Z, Chen W, Liang B, et al. Capacitive pressure sensor with high sensitivity and fast response to dynamic interaction based on
                    graphene and porous nylon networks. ACS Appl Mater Interfaces 2018;10:12816-23.  DOI
               66.       Ma Y, Pharr M, Wang L, et al. Soft elastomers with ionic liquid-filled cavities as strain isolating substrates for wearable electronics.
                    Small 2017;13:1602954.  DOI  PubMed  PMC
               67.       Yang J, Liu Q, Deng Z, et al. Ionic liquid-activated wearable electronics. Mater Today Phys 2019;8:78-85.  DOI
               68.       Joh H, Lee WS, Kang MS, et al. Surface design of nanocrystals for high-performance multifunctional sensors in wearable and
                    attachable electronics. Chem Mater 2019;31:436-44.  DOI
               69.       Xu F, Li X, Shi Y, et al. Recent developments for flexible pressure sensors: a review. Micromachines 2018;9:580.  DOI  PubMed
                    PMC
               70.       Pan S, Zhang Z. Fundamental theories and basic principles of triboelectric effect: a review. Friction 2019;7:2-17.  DOI
               71.       Shin SH, Park DH, Jung JY, Lee MH, Nah J. Ferroelectric zinc oxide nanowire embedded flexible sensor for motion and temperature
                    sensing. ACS Appl Mater Interfaces 2017;9:9233-8.  DOI  PubMed
   145   146   147   148   149   150   151   152   153   154   155