Page 150 - Read Online
P. 150
Tian et al. Soft Sci 2023;3:30 https://dx.doi.org/10.20517/ss.2023.21 Page 25 of 27
40. Liu M, Pu X, Jiang C, et al. Large-area all-textile pressure sensors for monitoring human motion and physiological signals. Adv
Mater 2017;29:1703700. DOI
41. Souri H, Bhattacharyya D. Highly stretchable multifunctional wearable devices based on conductive cotton and wool fabrics. ACS
Appl Mater Interfaces 2018;10:20845-53. DOI PubMed
42. Tobjörk D, Österbacka R. Paper electronics. Adv Mater 2011;23:1935-61. DOI PubMed
43. Zou B, Chen Y, Liu Y, et al. Repurposed leather with sensing capabilities for multifunctional electronic skin. Adv Sci
2019;6:1801283. DOI PubMed PMC
44. Savagatrup S, Printz AD, O’connor TF, Zaretski AV, Lipomi DJ. Molecularly stretchable electronics. Chem Mater 2014;26:3028-41.
DOI
45. Rajendran V, Mohan A, Jayaraman M, Nakagawa T. All-printed, interdigitated, freestanding serpentine interconnects based flexible
solid state supercapacitor for self powered wearable electronics. Nano Energy 2019;65:104055. DOI
46. Yamamoto M, Karasawa R, Okuda S, Takamatsu S, Itoh T. Long wavy copper stretchable interconnects fabricated by continuous
microcorrugation process for wearable applications. Eng Rep 2020;2:e12143. DOI
47. Ndolomingo MJ, Bingwa N, Meijboom R. Review of supported metal nanoparticles: synthesis methodologies, advantages and
application as catalysts. J Mater Sci 2020;55:6195-241. DOI
48. Araki T, Uemura T, Yoshimoto S, et al. Wireless monitoring using a stretchable and transparent sensor sheet containing metal
nanowires. Adv Mater 2020;32:e1902684. DOI
49. Wu G, Han X, Cai J, et al. In-plane strain engineering in ultrathin noble metal nanosheets boosts the intrinsic electrocatalytic
hydrogen evolution activity. Nat Commun 2022;13:4200. DOI PubMed PMC
50. Lipomi DJ, Vosgueritchian M, Tee BC, et al. Skin-like pressure and strain sensors based on transparent elastic films of carbon
nanotubes. Nat Nanotechnol 2011;6:788-92. DOI
51. Razaq A, Bibi F, Zheng X, Papadakis R, Jafri SHM, Li H. Review on graphene-, graphene oxide-, reduced graphene oxide-based
flexible composites: from fabrication to applications. Materials 2022;15:1012. DOI PubMed PMC
52. Wang Y, Zhu C, Pfattner R, et al. A highly stretchable, transparent, and conductive polymer. Sci Adv 2017;3:e1602076. DOI
PubMed PMC
53. Wang M, Tang XH, Cai JH, Wu H, Shen JB, Guo SY. Construction, mechanism and prospective of conductive polymer composites
with multiple interfaces for electromagnetic interference shielding: a review. Carbon 2021;177:377-402. DOI
54. Vo TT, Lee HJ, Kim SY, Suk JW. Synergistic effect of graphene/silver nanowire hybrid fillers on highly stretchable strain sensors
based on spandex composites. Nanomaterials 2020;10:2063. DOI PubMed PMC
55. Liu Y, Liu J, Chen S, et al. Soft and elastic hydrogel-based microelectronics for localized low-voltage neuromodulation. Nat Biomed
Eng 2019;3:58-68. DOI
56. Gao Y, Ota H, Schaler EW, et al. Wearable Microfluidic Diaphragm Pressure Sensor for Health and Tactile Touch Monitoring. Adv
Mater 2017;29:1701985. DOI
57. Luo Y, Abidian MR, Ahn JH, et al. Technology Roadmap for Flexible Sensors. ACS Nano 2023;17:5211-95. DOI PubMed
58. Mishra RB, El atab N, Hussain AM, Hussain MM. Recent progress on flexible capacitive pressure sensors: from design and
materials to applications. Adv Mater Technol 2021;6:2001023. DOI
59. Huang Y, Fan X, Chen S, Zhao N. Emerging technologies of flexible pressure sensors: materials, modeling, devices, and
manufacturing. Adv Funct Mater 2019;29:1808509. DOI
60. Chen W, Yan X. Progress in achieving high-performance piezoresistive and capacitive flexible pressure sensors: a review. J Mater
Sci Technol 2020;43:175-88. DOI
61. Yu A, Zhu Y, Wang W, Zhai J. Progress in triboelectric materials: toward high performance and widespread applications. Adv Funct
Mater 2019;29:1900098. DOI
62. Yang L, Chen Z, Dargusch MS, Zou J. High performance thermoelectric materials: progress and their applications. Adv Energy Mater
2018;8:1701797. DOI
63. Zhang D, Wu H, Bowen CR, Yang Y. Recent advances in pyroelectric materials and applications. Small 2021;17:e2103960. DOI
64. Dinh T, Phan H, Qamar A, Woodfield P, Nguyen N, Dao DV. Thermoresistive effect for advanced thermal sensors: fundamentals,
design considerations, and applications. J Microelectromech S 2017;26:966-86. DOI
65. He Z, Chen W, Liang B, et al. Capacitive pressure sensor with high sensitivity and fast response to dynamic interaction based on
graphene and porous nylon networks. ACS Appl Mater Interfaces 2018;10:12816-23. DOI
66. Ma Y, Pharr M, Wang L, et al. Soft elastomers with ionic liquid-filled cavities as strain isolating substrates for wearable electronics.
Small 2017;13:1602954. DOI PubMed PMC
67. Yang J, Liu Q, Deng Z, et al. Ionic liquid-activated wearable electronics. Mater Today Phys 2019;8:78-85. DOI
68. Joh H, Lee WS, Kang MS, et al. Surface design of nanocrystals for high-performance multifunctional sensors in wearable and
attachable electronics. Chem Mater 2019;31:436-44. DOI
69. Xu F, Li X, Shi Y, et al. Recent developments for flexible pressure sensors: a review. Micromachines 2018;9:580. DOI PubMed
PMC
70. Pan S, Zhang Z. Fundamental theories and basic principles of triboelectric effect: a review. Friction 2019;7:2-17. DOI
71. Shin SH, Park DH, Jung JY, Lee MH, Nah J. Ferroelectric zinc oxide nanowire embedded flexible sensor for motion and temperature
sensing. ACS Appl Mater Interfaces 2017;9:9233-8. DOI PubMed

