Page 151 - Read Online
P. 151
Page 26 of 27 Tian et al. Soft Sci 2023;3:30 https://dx.doi.org/10.20517/ss.2023.21
72. Gao Z, Lou Z, Han W, Shen G. A self-healable bifunctional electronic skin. ACS Appl Mater Interfaces 2020;12:24339-47. DOI
73. An BW, Heo S, Ji S, Bien F, Park JU. Transparent and flexible fingerprint sensor array with multiplexed detection of tactile pressure
and skin temperature. Nat Commun 2018;9:2458. DOI PubMed PMC
74. Wang Z, Zhang L, Liu J, Li C. A flexible bimodal sensor based on an electrospun nanofibrous structure for simultaneous pressure-
temperature detection. Nanoscale 2019;11:14242-9. DOI PubMed
75. Kim K, Jung M, Kim B, et al. Low-voltage, high-sensitivity and high-reliability bimodal sensor array with fully inkjet-printed
flexible conducting electrode for low power consumption electronic skin. Nano Energy 2017;41:301-7. DOI
76. Xu S, Zhang Y, Cho J, et al. Stretchable batteries with self-similar serpentine interconnects and integrated wireless recharging
systems. Nat Commun 2013;4:1543. DOI
77. Kim JO, Kwon SY, Kim Y, et al. Highly ordered 3D microstructure-based electronic skin capable of differentiating pressure,
temperature, and proximity. ACS Appl Mater Interfaces 2019;11:1503-11. DOI
78. Song K, Zhao R, Wang ZL, Yang Y. Conjuncted pyro-piezoelectric effect for self-powered simultaneous temperature and pressure
sensing. Adv Mater 2019;31:e1902831. DOI PubMed
79. Lei Z, Wang Q, Wu P. A multifunctional skin-like sensor based on a 3D printed thermo-responsive hydrogel. Mater Horiz
2017;4:694-700. DOI
80. Cao MS, Wang XX, Zhang M, Cao WQ, Fang XY, Yuan J. Variable-temperature electron transport and dipole polarization turning
flexible multifunctional microsensor beyond electrical and optical energy. Adv Mater 2020;32:e1907156. DOI PubMed
81. Šakalys R, Mohammadlou BS, Raghavendra R. Fabrication of multi-material electronic components applying non-contact printing
technologies: a review. Results Eng 2022;15:100578. DOI
82. Ojuri BA. Printed electronics: capabilities and potentials for intelligent interactive packaging. 2022. Available from: https://
www.theseus.fi/bitstream/handle/10024/750269/Ojuri_Babakolade%20Adefolu.pdf?sequence=2 [Last accessed on 20 Jul 2023].
83. Khan S, Lorenzelli L, Dahiya RS. Technologies for printing sensors and electronics over large flexible substrates: a review. IEEE
Sensors J 2015;15:3164-85. DOI
84. Grau G, Cen J, Kang H, Kitsomboonloha R, Scheideler WJ, Subramanian V. Gravure-printed electronics: recent progress in tooling
development, understanding of printing physics, and realization of printed devices. Flex Print Electron 2016;1:023002. DOI
85. Assaifan AK, Al Habis N, Ahmad I, Alshehri NA, Alharbi HF. Scaling-up medical technologies using flexographic printing. Talanta
2020;219:121236. DOI PubMed
86. He P, Cao J, Ding H, et al. Screen-printing of a highly conductive graphene ink for flexible printed electronics. ACS Appl Mater
Interfaces 2019;11:32225-34. DOI
87. Patidar R, Burkitt D, Hooper K, Richards D, Watson T. Slot-die coating of perovskite solar cells: an overview. Mater Today Commun
2020;22:100808. DOI
88. Choi J, Kim Y, Lee S, et al. Drop-on-demand printing of conductive ink by electrostatic field induced inkjet head. Applied Physics
Letters 2008;93:193508. DOI
89. Ohsawa M, Hashimoto N. Flexible and transparent silver-grid over-coated with PEDOT: PSS electrode prepared by gravure offset
printing. In: 2018 International Conference on Electronics Packaging and iMAPS All Asia Conference (ICEP-IAAC); 2018 Apr 17-
21;Mie, Japan. IEEE;2018.p. 509-513. DOI
90. Shah MA, Lee D, Lee B, Hur S. Classifications and applications of inkjet printing technology: a review. IEEE ACcess
2021;9:140079-102. DOI
91. Luo H, Pang G, Xu K, Ye Z, Yang H, Yang G. A fully printed flexible sensor sheet for simultaneous proximity-pressure-temperature
detection.Adv Mater Technol 2021;6:2100616. DOI
92. Yamamoto Y, Harada S, Yamamoto D, et al. Printed multifunctional flexible device with an integrated motion sensor for health care
monitoring. Sci Adv 2016;2:e1601473. DOI PubMed PMC
93. Harada S, Honda W, Arie T, Akita S, Takei K. Fully printed, highly sensitive multifunctional artificial electronic whisker arrays
integrated with strain and temperature sensors. ACS Nano 2014;8:3921-7. DOI PubMed
94. Jin T, Sun Z, Li L, et al. Triboelectric nanogenerator sensors for soft robotics aiming at digital twin applications. Nat Commun
2020;11:5381. DOI PubMed PMC
95. Liu F, Deswal S, Christou A, Sandamirskaya Y, Kaboli M, Dahiya R. Neuro-inspired electronic skin for robots. Sci Robot
2022;7:eabl7344. DOI PubMed
96. Liu F, Deswal S, Christou A, et al. Printed synaptic transistor-based electronic skin for robots to feel and learn. Sci Robot
2022;7:eabl7286. DOI PubMed
97. Liu Y, Yiu C, Song Z, et al. Electronic skin as wireless human-machine interfaces for robotic VR. Sci Adv 2022;8:eabl6700. DOI
PubMed PMC
98. Zeng X, Peng R, Fan Z, Lin Y. Self-powered and wearable biosensors for healthcare. Mater Today Energy 2022;23:100900. DOI
99. Patel S, Ershad F, Zhao M, et al. Wearable electronics for skin wound monitoring and healing. Soft Sci 2022;2:9. DOI PubMed
PMC
100. Zhu J, Ren Z, Lee C. Toward healthcare diagnoses by machine-learning-enabled volatile organic compound identification. ACS Nano
2021;15:894-903. DOI
101. Wang Y, Xu C, Yu X, Zhang H, Han M. Multilayer flexible electronics: manufacturing approaches and applications. Mater Today
Phys 2022;23:100647. DOI

