Page 149 - Read Online
P. 149
Page 24 of 27 Tian et al. Soft Sci 2023;3:30 https://dx.doi.org/10.20517/ss.2023.21
8. Gao Y, Yu L, Yeo JC, Lim CT. Flexible hybrid sensors for health monitoring: materials and mechanisms to render wearability. Adv
Mater 2020;32:e1902133. DOI PubMed
9. Huang S, Liu Y, Zhao Y, Ren Z, Guo CF. Flexible electronics: stretchable electrodes and their future. Adv Funct Mater
2019;29:1805924. DOI
10. Chang Y, Wang L, Li R, et al. First decade of interfacial iontronic sensing: from droplet sensors to artificial skins. Adv Mater
2021;33:e2003464. DOI PubMed
11. Wang Y, Mao H, Wang Y, Zhu P, Liu C, Deng Y. 3D geometrically structured PANI/CNT-decorated polydimethylsiloxane active
pressure and temperature dual-parameter sensors for man–machine interaction applications. J Mater Chem A 2020;8:15167-76. DOI
12. Hong SY, Oh JH, Park H, et al. Polyurethane foam coated with a multi-walled carbon nanotube/polyaniline nanocomposite for a skin-
like stretchable array of multi-functional sensors. NPG Asia Mater 2017;9:e448. DOI
13. Li F, Liu Y, Shi X, et al. Printable and stretchable temperature-strain dual-sensing nanocomposite with high sensitivity and perfect
stimulus discriminability. Nano Lett 2020;20:6176-84. DOI
14. Jung M, Kim K, Kim B, et al. Paper-based bimodal sensor for electronic skin applications. ACS Appl Mater Interfaces 2017;9:26974-
82. DOI
15. Zhang F, Zang Y, Huang D, Di CA, Zhu D. Flexible and self-powered temperature-pressure dual-parameter sensors using
microstructure-frame-supported organic thermoelectric materials. Nat Commun 2015;6:8356. DOI PubMed PMC
16. Hou C, Tai G, Liu Y, et al. Borophene pressure sensing for electronic skin and human-machine interface. Nano Energy
2022;97:107189. DOI
17. Chen S, Peng S, Sun W, Gu G, Zhang Q, Guo X. Scalable processing ultrathin polymer dielectric films with a generic solution based
approach for wearable soft electronics. Adv Mater Technol 2019;4:1800681. DOI
18. Li S, Li R, Chen T, Xiao X. Highly sensitive and flexible capacitive pressure sensor enhanced by weaving of pyramidal concavities
staggered in honeycomb matrix. IEEE Sensors J 2020;20:14436-43. DOI
19. Ahmed A, Guan YS, Hassan I, et al. Multifunctional smart electronic skin fabricated from two-dimensional like polymer film.
Nano Energy 2020;75:105044. DOI
20. Chen H, Han S, Liu C, et al. Investigation of PVDF-TrFE composite with nanofillers for sensitivity improvement. Sensor Actuat A-
Phys 2016;245:135-9. DOI
21. Sheng F, Zhang B, Cheng R, et al. Wearable energy harvesting-storage hybrid textiles as on-body self-charging power systems. Nano
Research Energy 2023;2:e9120079. DOI
22. Wang X, Zhang H, Dong L, et al. Self-powered high-resolution and pressure-sensitive triboelectric sensor matrix for real-time tactile
mapping. Adv Mater 2016;28:2896-903. DOI
23. Rao J, Chen Z, Zhao D, et al. Tactile electronic skin to simultaneously detect and distinguish between temperature and pressure based
on a triboelectric nanogenerator. Nano Energy 2020;75:105073. DOI
24. You I, Mackanic DG, Matsuhisa N, et al. Artificial multimodal receptors based on ion relaxation dynamics. Science 2020;370:961-5.
DOI
25. Harada S, Kanao K, Yamamoto Y, Arie T, Akita S, Takei K. Fully printed flexible fingerprint-like three-axis tactile and slip force
and temperature sensors for artificial skin. ACS Nano 2014;8:12851-7. DOI PubMed
26. Mannsfeld SC, Tee BC, Stoltenberg RM, et al. Highly sensitive flexible pressure sensors with microstructured rubber dielectric
layers. Nat Mater 2010;9:859-64. DOI
27. Zhang W, Hou C, Li Y, Zhang Q, Wang H. A strong and flexible electronic vessel for real-time monitoring of temperature, motions
and flow. Nanoscale 2017;9:17821-8. DOI
28. Hua Q, Sun J, Liu H, et al. Skin-inspired highly stretchable and conformable matrix networks for multifunctional sensing. Nat
Commun 2018;9:244. DOI PubMed PMC
29. Zhang H, Moon SK, Ngo TH. 3D Printed electronics of non-contact ink writing techniques: status and promise. Ent J Pr Eng Man-GT
2020;7:511-24. DOI
30. Ni H, Liu J, Wang Z, Yang S. A review on colorless and optically transparent polyimide films: chemistry, process and engineering
applications. J Ind Eng Chem 2015;28:16-27. DOI
31. Root SE, Savagatrup S, Printz AD, Rodriquez D, Lipomi DJ. Mechanical properties of organic semiconductors for stretchable, highly
flexible, and mechanically robust electronics. Chem Rev 2017;117:6467-99. DOI PubMed
32. Mei J, Bao Z. Side chain engineering in solution-processable conjugated polymers. Chem Mater 2014;26:604-15. DOI
33. You I, Kong M, Jeong U. Block copolymer elastomers for stretchable electronics. Acc Chem Res 2019;52:63-72. DOI
34. Shin M, Song JH, Lim GH, Lim B, Park JJ, Jeong U. Highly stretchable polymer transistors consisting entirely of stretchable device
components. Adv Mater 2014;26:3706-11. DOI PubMed
35. Lin S, Yuk H, Zhang T, et al. Stretchable hydrogel electronics and devices. Adv Mater 2016;28:4497-505. DOI PubMed PMC
36. Mao J, Li T, Luo Y. Significantly improved electromechanical performance of dielectric elastomers via alkyl side-chain engineering.
J Mater Chem C 2017;5:6834-41. DOI
37. Buenger D, Topuz F, Groll J. Hydrogels in sensing applications. Prog Polym Sci 2012;37:1678-719. DOI
38. Koebel M, Rigacci A, Achard P. Aerogel-based thermal superinsulation: an overview. J Sol-Gel Sci Technol 2012;63:315-39. DOI
39. Wang C, Zhang M, Xia K, et al. Intrinsically stretchable and conductive textile by a scalable process for elastic wearable electronics.
ACS Appl Mater Interfaces 2017;9:13331-8. DOI

