Page 149 - Read Online
P. 149

Page 24 of 27                            Tian et al. Soft Sci 2023;3:30  https://dx.doi.org/10.20517/ss.2023.21

               8.       Gao Y, Yu L, Yeo JC, Lim CT. Flexible hybrid sensors for health monitoring: materials and mechanisms to render wearability. Adv
                    Mater 2020;32:e1902133.  DOI  PubMed
               9.       Huang S, Liu Y, Zhao Y, Ren Z, Guo CF. Flexible electronics: stretchable electrodes and their future. Adv Funct Mater
                    2019;29:1805924.  DOI
               10.       Chang Y, Wang L, Li R, et al. First decade of interfacial iontronic sensing: from droplet sensors to artificial skins. Adv Mater
                    2021;33:e2003464.  DOI  PubMed
               11.       Wang Y, Mao H, Wang Y, Zhu P, Liu C, Deng Y. 3D geometrically structured PANI/CNT-decorated polydimethylsiloxane active
                    pressure and temperature dual-parameter sensors for man–machine interaction applications. J Mater Chem A 2020;8:15167-76.  DOI
               12.       Hong SY, Oh JH, Park H, et al. Polyurethane foam coated with a multi-walled carbon nanotube/polyaniline nanocomposite for a skin-
                    like stretchable array of multi-functional sensors. NPG Asia Mater 2017;9:e448.  DOI
               13.       Li F, Liu Y, Shi X, et al. Printable and stretchable temperature-strain dual-sensing nanocomposite with high sensitivity and perfect
                    stimulus discriminability. Nano Lett 2020;20:6176-84.  DOI
               14.       Jung M, Kim K, Kim B, et al. Paper-based bimodal sensor for electronic skin applications. ACS Appl Mater Interfaces 2017;9:26974-
                    82.  DOI
               15.       Zhang F, Zang Y, Huang D, Di CA, Zhu D. Flexible and self-powered temperature-pressure dual-parameter sensors using
                    microstructure-frame-supported organic thermoelectric materials. Nat Commun 2015;6:8356.  DOI  PubMed  PMC
               16.       Hou C, Tai G, Liu Y, et al. Borophene pressure sensing for electronic skin and human-machine interface.  Nano Energy
                    2022;97:107189.  DOI
               17.       Chen S, Peng S, Sun W, Gu G, Zhang Q, Guo X. Scalable processing ultrathin polymer dielectric films with a generic solution based
                    approach for wearable soft electronics. Adv Mater Technol 2019;4:1800681.  DOI
               18.       Li S, Li R, Chen T, Xiao X. Highly sensitive and flexible capacitive pressure sensor enhanced by weaving of pyramidal concavities
                    staggered in honeycomb matrix. IEEE Sensors J 2020;20:14436-43.  DOI
               19.       Ahmed A, Guan YS, Hassan I, et al. Multifunctional smart electronic skin fabricated from two-dimensional like polymer film.
                    Nano Energy 2020;75:105044.  DOI
               20.       Chen H, Han S, Liu C, et al. Investigation of PVDF-TrFE composite with nanofillers for sensitivity improvement. Sensor Actuat A-
                    Phys 2016;245:135-9.  DOI
               21.       Sheng F, Zhang B, Cheng R, et al. Wearable energy harvesting-storage hybrid textiles as on-body self-charging power systems. Nano
                    Research Energy 2023;2:e9120079.  DOI
               22.       Wang X, Zhang H, Dong L, et al. Self-powered high-resolution and pressure-sensitive triboelectric sensor matrix for real-time tactile
                    mapping. Adv Mater 2016;28:2896-903.  DOI
               23.       Rao J, Chen Z, Zhao D, et al. Tactile electronic skin to simultaneously detect and distinguish between temperature and pressure based
                    on a triboelectric nanogenerator. Nano Energy 2020;75:105073.  DOI
               24.       You I, Mackanic DG, Matsuhisa N, et al. Artificial multimodal receptors based on ion relaxation dynamics. Science 2020;370:961-5.
                    DOI
               25.       Harada S, Kanao K, Yamamoto Y, Arie T, Akita S, Takei K. Fully printed flexible fingerprint-like three-axis tactile and slip force
                    and temperature sensors for artificial skin. ACS Nano 2014;8:12851-7.  DOI  PubMed
               26.       Mannsfeld SC, Tee BC, Stoltenberg RM, et al. Highly sensitive flexible pressure sensors with microstructured rubber dielectric
                    layers. Nat Mater 2010;9:859-64.  DOI
               27.       Zhang W, Hou C, Li Y, Zhang Q, Wang H. A strong and flexible electronic vessel for real-time monitoring of temperature, motions
                    and flow. Nanoscale 2017;9:17821-8.  DOI
               28.       Hua Q, Sun J, Liu H, et al. Skin-inspired highly stretchable and conformable matrix networks for multifunctional sensing. Nat
                    Commun 2018;9:244.  DOI  PubMed  PMC
               29.       Zhang H, Moon SK, Ngo TH. 3D Printed electronics of non-contact ink writing techniques: status and promise. Ent J Pr Eng Man-GT
                    2020;7:511-24.  DOI
               30.       Ni H, Liu J, Wang Z, Yang S. A review on colorless and optically transparent polyimide films: chemistry, process and engineering
                    applications. J Ind Eng Chem 2015;28:16-27.  DOI
               31.       Root SE, Savagatrup S, Printz AD, Rodriquez D, Lipomi DJ. Mechanical properties of organic semiconductors for stretchable, highly
                    flexible, and mechanically robust electronics. Chem Rev 2017;117:6467-99.  DOI  PubMed
               32.       Mei J, Bao Z. Side chain engineering in solution-processable conjugated polymers. Chem Mater 2014;26:604-15.  DOI
               33.       You I, Kong M, Jeong U. Block copolymer elastomers for stretchable electronics. Acc Chem Res 2019;52:63-72.  DOI
               34.       Shin M, Song JH, Lim GH, Lim B, Park JJ, Jeong U. Highly stretchable polymer transistors consisting entirely of stretchable device
                    components. Adv Mater 2014;26:3706-11.  DOI  PubMed
               35.       Lin S, Yuk H, Zhang T, et al. Stretchable hydrogel electronics and devices. Adv Mater 2016;28:4497-505.  DOI  PubMed  PMC
               36.       Mao J, Li T, Luo Y. Significantly improved electromechanical performance of dielectric elastomers via alkyl side-chain engineering.
                    J Mater Chem C 2017;5:6834-41.  DOI
               37.       Buenger D, Topuz F, Groll J. Hydrogels in sensing applications. Prog Polym Sci 2012;37:1678-719.  DOI
               38.       Koebel M, Rigacci A, Achard P. Aerogel-based thermal superinsulation: an overview. J Sol-Gel Sci Technol 2012;63:315-39.  DOI
               39.       Wang C, Zhang M, Xia K, et al. Intrinsically stretchable and conductive textile by a scalable process for elastic wearable electronics.
                    ACS Appl Mater Interfaces 2017;9:13331-8.  DOI
   144   145   146   147   148   149   150   151   152   153   154