Page 135 - Read Online
P. 135

Kim et al. Soft Sci 2023;3:18  https://dx.doi.org/10.20517/ss.2023.08           Page 17 of 19

               16.      Rathi S, Deckert M, Brinkhues S, et al. PEDOT:PSS as a transparent electrically conducting polymer for brain stimulation electrodes.
                   In: 2019 IEEE 16th India Council International Conference (INDICON).2019. p. 1-4.  DOI
               17.      Wang Y, Zhu C, Pfattner R, et al. A highly stretchable, transparent, and conductive polymer. Sci Adv 2017;3:e1602076.  DOI  PubMed
                   PMC
               18.      Lu B, Yuk H, Lin S, et al. Pure PEDOT:PSS hydrogels. Nat Commun 2019;10:1043.  DOI  PubMed  PMC
               19.      Feig VR, Tran H, Lee M, Bao Z. Mechanically tunable conductive interpenetrating network hydrogels that mimic the elastic moduli of
                   biological tissue. Nat Commun 2018;9:2740.  DOI  PubMed  PMC
               20.      Feig VR, Tran H, Lee M, et al. An electrochemical gelation method for patterning conductive PEDOT:PSS hydrogels. Adv Mater
                   2019;31:e1902869.  DOI
               21.      Palumbiny CM, Liu F, Russell TP, Hexemer A, Wang C, Müller-Buschbaum P. The crystallization of PEDOT:PSS polymeric
                   electrodes probed in situ during printing. Adv Mater 2015;27:3391-7.  DOI  PubMed
               22.      Jiang Y, Zhang Z, Wang YX, et al. Topological supramolecular network enabled high-conductivity, stretchable organic bioelectronics.
                   Science 2022;375:1411-7.  DOI
               23.      Green R. Elastic and conductive hydrogel electrodes. Nat Biomed Eng 2019;3:9-10.  DOI  PubMed
               24.      Jo YJ, Kim SY, Hyun JH, et al. Fibrillary gelation and dedoping of PEDOT:PSS fibers for interdigitated organic electrochemical
                   transistors and circuits. npj Flex Electron 2022:6.  DOI
               25.      Lu L, Fu X, Liew Y, et al. Soft and MRI compatible neural electrodes from carbon nanotube fibers. Nano Lett 2019;19:1577-86.  DOI
               26.      Chen G, Dodson B, Johnson F, et al. Tissue-susceptibility matched carbon nanotube electrodes for magnetic resonance imaging. J
                   Magn Reson 2018;295:72-9.  DOI
               27.      Ye F, Li M, Ke D, Wang L, Lu Y. Ultrafast Self healing and injectable conductive hydrogel for strain and pressure sensors. Adv
                   Mater Technol 2019;4:1900346.  DOI
               28.      Tringides CM, Vachicouras N, de Lázaro I, et al. Viscoelastic surface electrode arrays to interface with viscoelastic tissues. Nat
                   Nanotechnol 2021;16:1019-29.  DOI  PubMed  PMC
               29.      Son D, Kang J, Vardoulis O, et al. An integrated self-healable electronic skin system fabricated via dynamic reconstruction of a
                   nanostructured conducting network. Nat Nanotechnol 2018;13:1057-65.  DOI
               30.      Zhao S, Liu X, Xu Z, et al. Graphene encapsulated copper microwires as highly MRI compatible neural electrodes. Nano Lett
                   2016;16:7731-8.  DOI
               31.      Bakhshaee Babaroud N, Palmar M, Velea AI, et al. Multilayer CVD graphene electrodes using a transfer-free process for the next
                   generation of optically transparent and MRI-compatible neural interfaces. Microsyst Nanoeng 2022;8:107.  DOI  PubMed  PMC
               32.      Oribe S, Yoshida S, Kusama S, et al. Hydrogel-based organic subdural electrode with high conformability to brain surface. Sci Rep
                   2019;9:13379.  DOI  PubMed  PMC
               33.      Fallegger F, Schiavone G, Pirondini E, et al. MRI-compatible and conformal electrocorticography grids for translational research. Adv
                   Sci 2021;8:2003761.  DOI  PubMed  PMC
               34.      Chen R, Canales A, Anikeeva P. Neural recording and modulation technologies. Nat Rev Mater 2017;2:16093.  DOI  PubMed  PMC
               35.      Kim DH, Lu N, Ma R, et al. Epidermal electronics. Science 2011;333:838-43.  DOI
               36.      Kim N, Kim J, Seo J, Hong C, Lee J. Stretchable inorganic LED displays with double-layer modular design for high fill factor. ACS
                   Appl Mater Interfaces 2022;14:4344-51.  DOI
               37.      Jang KI, Chung HU, Xu S, et al. Soft network composite materials with deterministic and bio-inspired designs. Nat Commun
                   2015;6:6566.  DOI  PubMed  PMC
               38.      Liu J, Zhang X, Liu Y, et al. Intrinsically stretchable electrode array enabled in vivo electrophysiological mapping of atrial fibrillation
                   at cellular resolution. Proc Natl Acad Sci U S A 2020;117:14769-78.  DOI  PubMed  PMC
               39.      Yuk H, Lu B, Zhao X. Hydrogel bioelectronics. Chem Soc Rev 2019;48:1642-67.  DOI  PubMed
               40.      Lee YY, Kang HY, Gwon SH, et al. A Strain-insensitive stretchable electronic conductor: PEDOT:PSS/acrylamide organogels. Adv
                   Mater 2016;28:1636-43.  DOI
               41.      Yang Q, Wei T, Yin RT, et al. Photocurable bioresorbable adhesives as functional interfaces between flexible bioelectronic devices
                   and soft biological tissues. Nat Mater 2021;20:1559-70.  DOI  PubMed  PMC
               42.      Son D, Lee J, Qiao S, et al. Multifunctional wearable devices for diagnosis and therapy of movement disorders. Nat Nanotechnol
                   2014;9:397-404.  DOI
               43.      Ju J, Kim J, Choi Y, et al. Punicalagin-loaded alginate/chitosan-gallol hydrogels for efficient wound repair and hemostasis. Polymers
                   2022;14:3248.  DOI  PubMed  PMC
               44.      Kim J, Ju J, Kim SD, Shin M. Plant-inspired Pluronic-gallol micelles with low critical micelle concentration, high colloidal stability,
                   and protein affinity. Biomater Sci 2022;10:3739-46.  DOI  PubMed
               45.      Shin M, Song KH, Burrell JC, Cullen DK, Burdick JA. Injectable and conductive granular hydrogels for 3D printing and electroactive
                   tissue support. Adv Sci 2019;6:1901229.  DOI  PubMed  PMC
               46.      Uman S, Dhand A, Burdick JA. Recent advances in shear thinning and self-healing hydrogels for biomedical applications. J Appl
                   Polym Sci 2020;137:48668.  DOI
               47.      Jin S, Kim Y, Son D, Shin M. Tissue adhesive, conductive, and injectable cellulose hydrogel ink for on-skin direct writing of
                   electronics. Gels 2022;8:336.  DOI  PubMed  PMC
               48.      Shin M, Park E, Lee H. Plant-inspired pyrogallol-containing functional materials. Adv Funct Mater 2019;29:1903022.  DOI
   130   131   132   133   134   135   136   137   138   139   140