Page 135 - Read Online
P. 135
Kim et al. Soft Sci 2023;3:18 https://dx.doi.org/10.20517/ss.2023.08 Page 17 of 19
16. Rathi S, Deckert M, Brinkhues S, et al. PEDOT:PSS as a transparent electrically conducting polymer for brain stimulation electrodes.
In: 2019 IEEE 16th India Council International Conference (INDICON).2019. p. 1-4. DOI
17. Wang Y, Zhu C, Pfattner R, et al. A highly stretchable, transparent, and conductive polymer. Sci Adv 2017;3:e1602076. DOI PubMed
PMC
18. Lu B, Yuk H, Lin S, et al. Pure PEDOT:PSS hydrogels. Nat Commun 2019;10:1043. DOI PubMed PMC
19. Feig VR, Tran H, Lee M, Bao Z. Mechanically tunable conductive interpenetrating network hydrogels that mimic the elastic moduli of
biological tissue. Nat Commun 2018;9:2740. DOI PubMed PMC
20. Feig VR, Tran H, Lee M, et al. An electrochemical gelation method for patterning conductive PEDOT:PSS hydrogels. Adv Mater
2019;31:e1902869. DOI
21. Palumbiny CM, Liu F, Russell TP, Hexemer A, Wang C, Müller-Buschbaum P. The crystallization of PEDOT:PSS polymeric
electrodes probed in situ during printing. Adv Mater 2015;27:3391-7. DOI PubMed
22. Jiang Y, Zhang Z, Wang YX, et al. Topological supramolecular network enabled high-conductivity, stretchable organic bioelectronics.
Science 2022;375:1411-7. DOI
23. Green R. Elastic and conductive hydrogel electrodes. Nat Biomed Eng 2019;3:9-10. DOI PubMed
24. Jo YJ, Kim SY, Hyun JH, et al. Fibrillary gelation and dedoping of PEDOT:PSS fibers for interdigitated organic electrochemical
transistors and circuits. npj Flex Electron 2022:6. DOI
25. Lu L, Fu X, Liew Y, et al. Soft and MRI compatible neural electrodes from carbon nanotube fibers. Nano Lett 2019;19:1577-86. DOI
26. Chen G, Dodson B, Johnson F, et al. Tissue-susceptibility matched carbon nanotube electrodes for magnetic resonance imaging. J
Magn Reson 2018;295:72-9. DOI
27. Ye F, Li M, Ke D, Wang L, Lu Y. Ultrafast Self healing and injectable conductive hydrogel for strain and pressure sensors. Adv
Mater Technol 2019;4:1900346. DOI
28. Tringides CM, Vachicouras N, de Lázaro I, et al. Viscoelastic surface electrode arrays to interface with viscoelastic tissues. Nat
Nanotechnol 2021;16:1019-29. DOI PubMed PMC
29. Son D, Kang J, Vardoulis O, et al. An integrated self-healable electronic skin system fabricated via dynamic reconstruction of a
nanostructured conducting network. Nat Nanotechnol 2018;13:1057-65. DOI
30. Zhao S, Liu X, Xu Z, et al. Graphene encapsulated copper microwires as highly MRI compatible neural electrodes. Nano Lett
2016;16:7731-8. DOI
31. Bakhshaee Babaroud N, Palmar M, Velea AI, et al. Multilayer CVD graphene electrodes using a transfer-free process for the next
generation of optically transparent and MRI-compatible neural interfaces. Microsyst Nanoeng 2022;8:107. DOI PubMed PMC
32. Oribe S, Yoshida S, Kusama S, et al. Hydrogel-based organic subdural electrode with high conformability to brain surface. Sci Rep
2019;9:13379. DOI PubMed PMC
33. Fallegger F, Schiavone G, Pirondini E, et al. MRI-compatible and conformal electrocorticography grids for translational research. Adv
Sci 2021;8:2003761. DOI PubMed PMC
34. Chen R, Canales A, Anikeeva P. Neural recording and modulation technologies. Nat Rev Mater 2017;2:16093. DOI PubMed PMC
35. Kim DH, Lu N, Ma R, et al. Epidermal electronics. Science 2011;333:838-43. DOI
36. Kim N, Kim J, Seo J, Hong C, Lee J. Stretchable inorganic LED displays with double-layer modular design for high fill factor. ACS
Appl Mater Interfaces 2022;14:4344-51. DOI
37. Jang KI, Chung HU, Xu S, et al. Soft network composite materials with deterministic and bio-inspired designs. Nat Commun
2015;6:6566. DOI PubMed PMC
38. Liu J, Zhang X, Liu Y, et al. Intrinsically stretchable electrode array enabled in vivo electrophysiological mapping of atrial fibrillation
at cellular resolution. Proc Natl Acad Sci U S A 2020;117:14769-78. DOI PubMed PMC
39. Yuk H, Lu B, Zhao X. Hydrogel bioelectronics. Chem Soc Rev 2019;48:1642-67. DOI PubMed
40. Lee YY, Kang HY, Gwon SH, et al. A Strain-insensitive stretchable electronic conductor: PEDOT:PSS/acrylamide organogels. Adv
Mater 2016;28:1636-43. DOI
41. Yang Q, Wei T, Yin RT, et al. Photocurable bioresorbable adhesives as functional interfaces between flexible bioelectronic devices
and soft biological tissues. Nat Mater 2021;20:1559-70. DOI PubMed PMC
42. Son D, Lee J, Qiao S, et al. Multifunctional wearable devices for diagnosis and therapy of movement disorders. Nat Nanotechnol
2014;9:397-404. DOI
43. Ju J, Kim J, Choi Y, et al. Punicalagin-loaded alginate/chitosan-gallol hydrogels for efficient wound repair and hemostasis. Polymers
2022;14:3248. DOI PubMed PMC
44. Kim J, Ju J, Kim SD, Shin M. Plant-inspired Pluronic-gallol micelles with low critical micelle concentration, high colloidal stability,
and protein affinity. Biomater Sci 2022;10:3739-46. DOI PubMed
45. Shin M, Song KH, Burrell JC, Cullen DK, Burdick JA. Injectable and conductive granular hydrogels for 3D printing and electroactive
tissue support. Adv Sci 2019;6:1901229. DOI PubMed PMC
46. Uman S, Dhand A, Burdick JA. Recent advances in shear thinning and self-healing hydrogels for biomedical applications. J Appl
Polym Sci 2020;137:48668. DOI
47. Jin S, Kim Y, Son D, Shin M. Tissue adhesive, conductive, and injectable cellulose hydrogel ink for on-skin direct writing of
electronics. Gels 2022;8:336. DOI PubMed PMC
48. Shin M, Park E, Lee H. Plant-inspired pyrogallol-containing functional materials. Adv Funct Mater 2019;29:1903022. DOI

