Page 137 - Read Online
P. 137

Kim et al. Soft Sci 2023;3:18  https://dx.doi.org/10.20517/ss.2023.08           Page 19 of 19

                   2018;34:7598-603.  DOI  PubMed
               79.      Liu X, Zai J, Iqbal A, et al. Glycerol-crosslinked PEDOT:PSS as bifunctional binder for Si anodes: Improved interfacial compatibility
                   and conductivity. J Colloid Interface Sci 2020;565:270-7.  DOI
               80.      Kim J, Jang JG, Kwak J, Hong JI, Kim SH. Enhanced humid reliability of organic thermoelectrics via crosslinking with glycerol.
                   Nanomaterials 2019;9:1591.  DOI  PubMed  PMC
               81.      Choi Y, Park K, Choi H, Son D, Shin M. Self-healing, stretchable, biocompatible, and conductive alginate hydrogels through dynamic
                   covalent bonds for implantable electronics. Polymers 2021;13:1133.  DOI  PubMed  PMC
               82.      Wang Z, Chen L, Chen Y, Liu P, Duan H, Cheng P. 3D printed ultrastretchable, hyper-antifreezing conductive hydrogel for sensitive
                   motion and electrophysiological signal monitoring. Research 2020;2020:1426078.  DOI  PubMed  PMC
               83.      Aggas JR, Abasi S, Phipps JF, Podstawczyk DA, Guiseppi-Elie A. Microfabricated and 3-D printed electroconductive hydrogels of
                   PEDOT:PSS and their application in bioelectronics. Biosens Bioelectron 2020;168:112568.  DOI  PubMed
               84.      Hiendlmeier L, Zurita F, Vogel J, et al. 4D-Printed soft and stretchable self-folding cuff electrodes for small-nerve interfacing. Adv
                   Mater 2023;35:e2210206.  DOI  PubMed
               85.      Puza F, Lienkamp K. 3D printing of polymer hydrogels-from basic techniques to programmable actuation. Adv Funct Materials
                   2022;32:2205345.  DOI
               86.      Kim K, Choi JH, Shin M. Mechanical stabilization of alginate hydrogel fiber and 3D constructs by mussel-inspired catechol
                   modification. Polymers 2021;13:892.  DOI  PubMed  PMC
               87.      Jeong JW, Shin G, Park SI, Yu KJ, Xu L, Rogers JA. Soft materials in neuroengineering for hard problems in neuroscience. Neuron
                   2015;86:175-86.  DOI
               88.      Lacour SP, Courtine G, Guck J. Materials and technologies for soft implantable neuroprostheses. Nat Rev Mater 2016:1.  DOI
               89.      Kang J, Son D, Wang GN, et al. Tough and water-insensitive self-healing elastomer for robust electronic skin. Adv Mater
                   2018;30:e1706846.  DOI  PubMed
               90.      Lim C, Hong YJ, Jung J, et al. Tissue-like skin-device interface for wearable bioelectronics by using ultrasoft, mass-permeable, and
                   low-impedance hydrogels. Sci Adv 2021:7.  DOI  PubMed  PMC
               91.      Liu Y, Liu J, Chen S, et al. Soft and elastic hydrogel-based microelectronics for localized low-voltage neuromodulation. Nat Biomed
                   Eng 2019;3:58-68.  DOI
               92.      Shahini A, Yazdimamaghani M, Walker KJ, et al. 3D conductive nanocomposite scaffold for bone tissue engineering. Int J
                   Nanomedicine 2014;9:167-81.  DOI  PubMed  PMC
               93.      Ouyang L, Shaw CL, Kuo CC, Griffin AL, Martin DC. In vivo polymerization of poly(3,4-ethylenedioxythiophene) in the living rat
                   hippocampus does not cause a significant loss of performance in a delayed alternation task. J Neural Eng 2014;11:026005.  DOI
                   PubMed  PMC
               94.      Filho G, Júnior C, Spinelli B, Damasceno I, Fiuza F, Morya E. All-polymeric electrode based on PEDOT:PSS for in vivo neural
                   recording. Biosensors 2022;12:853.  DOI  PubMed  PMC
               95.      Feig VR, Tran H, Bao Z. Biodegradable polymeric materials in degradable electronic devices. ACS Cent Sci 2018;4:337-48.  DOI
                   PubMed  PMC
               96.      Uva A, Lin A, Babi J, Tran H. Bioderived and degradable polymers for transient electronics. J of Chemical Tech & Biotech
                   2022;97:801-9.  DOI
   132   133   134   135   136   137   138   139   140   141   142