Page 137 - Read Online
P. 137
Kim et al. Soft Sci 2023;3:18 https://dx.doi.org/10.20517/ss.2023.08 Page 19 of 19
2018;34:7598-603. DOI PubMed
79. Liu X, Zai J, Iqbal A, et al. Glycerol-crosslinked PEDOT:PSS as bifunctional binder for Si anodes: Improved interfacial compatibility
and conductivity. J Colloid Interface Sci 2020;565:270-7. DOI
80. Kim J, Jang JG, Kwak J, Hong JI, Kim SH. Enhanced humid reliability of organic thermoelectrics via crosslinking with glycerol.
Nanomaterials 2019;9:1591. DOI PubMed PMC
81. Choi Y, Park K, Choi H, Son D, Shin M. Self-healing, stretchable, biocompatible, and conductive alginate hydrogels through dynamic
covalent bonds for implantable electronics. Polymers 2021;13:1133. DOI PubMed PMC
82. Wang Z, Chen L, Chen Y, Liu P, Duan H, Cheng P. 3D printed ultrastretchable, hyper-antifreezing conductive hydrogel for sensitive
motion and electrophysiological signal monitoring. Research 2020;2020:1426078. DOI PubMed PMC
83. Aggas JR, Abasi S, Phipps JF, Podstawczyk DA, Guiseppi-Elie A. Microfabricated and 3-D printed electroconductive hydrogels of
PEDOT:PSS and their application in bioelectronics. Biosens Bioelectron 2020;168:112568. DOI PubMed
84. Hiendlmeier L, Zurita F, Vogel J, et al. 4D-Printed soft and stretchable self-folding cuff electrodes for small-nerve interfacing. Adv
Mater 2023;35:e2210206. DOI PubMed
85. Puza F, Lienkamp K. 3D printing of polymer hydrogels-from basic techniques to programmable actuation. Adv Funct Materials
2022;32:2205345. DOI
86. Kim K, Choi JH, Shin M. Mechanical stabilization of alginate hydrogel fiber and 3D constructs by mussel-inspired catechol
modification. Polymers 2021;13:892. DOI PubMed PMC
87. Jeong JW, Shin G, Park SI, Yu KJ, Xu L, Rogers JA. Soft materials in neuroengineering for hard problems in neuroscience. Neuron
2015;86:175-86. DOI
88. Lacour SP, Courtine G, Guck J. Materials and technologies for soft implantable neuroprostheses. Nat Rev Mater 2016:1. DOI
89. Kang J, Son D, Wang GN, et al. Tough and water-insensitive self-healing elastomer for robust electronic skin. Adv Mater
2018;30:e1706846. DOI PubMed
90. Lim C, Hong YJ, Jung J, et al. Tissue-like skin-device interface for wearable bioelectronics by using ultrasoft, mass-permeable, and
low-impedance hydrogels. Sci Adv 2021:7. DOI PubMed PMC
91. Liu Y, Liu J, Chen S, et al. Soft and elastic hydrogel-based microelectronics for localized low-voltage neuromodulation. Nat Biomed
Eng 2019;3:58-68. DOI
92. Shahini A, Yazdimamaghani M, Walker KJ, et al. 3D conductive nanocomposite scaffold for bone tissue engineering. Int J
Nanomedicine 2014;9:167-81. DOI PubMed PMC
93. Ouyang L, Shaw CL, Kuo CC, Griffin AL, Martin DC. In vivo polymerization of poly(3,4-ethylenedioxythiophene) in the living rat
hippocampus does not cause a significant loss of performance in a delayed alternation task. J Neural Eng 2014;11:026005. DOI
PubMed PMC
94. Filho G, Júnior C, Spinelli B, Damasceno I, Fiuza F, Morya E. All-polymeric electrode based on PEDOT:PSS for in vivo neural
recording. Biosensors 2022;12:853. DOI PubMed PMC
95. Feig VR, Tran H, Bao Z. Biodegradable polymeric materials in degradable electronic devices. ACS Cent Sci 2018;4:337-48. DOI
PubMed PMC
96. Uva A, Lin A, Babi J, Tran H. Bioderived and degradable polymers for transient electronics. J of Chemical Tech & Biotech
2022;97:801-9. DOI

