Page 136 - Read Online
P. 136
Page 18 of 19 Kim et al. Soft Sci 2023;3:18 https://dx.doi.org/10.20517/ss.2023.08
49. Kim S, Choi H, Son D, Shin M. Conductive and adhesive granular alginate hydrogels for on-tissue writable bioelectronics. Gels
2023;9:167. DOI PubMed PMC
50. Lee KY, Mooney DJ. Hydrogels for tissue engineering. Chem Rev 2001;101:1869-79. DOI PubMed
51. Dromel PC, Singh D, Andres E, et al. A bioinspired gelatin-hyaluronic acid-based hybrid interpenetrating network for the
enhancement of retinal ganglion cells replacement therapy. NPJ Regen Med 2021;6:85. DOI PubMed PMC
52. Xing F, Zhou C, Hui D, et al. Hyaluronic acid as a bioactive component for bone tissue regeneration: Fabrication, modification,
properties, and biological functions. Nanotechno Rev 2020;9:1059-79. DOI
53. Kim S, Shin M. Role of free catecholamine in thiol-ene crosslinking for hyaluronic acid hydrogels with high loading efficiency of
anticancer drugs. Tissue Eng Regen Med 2022;19:281-7. DOI PubMed PMC
54. Shin J, Choi S, Kim JH, et al. Tissue adhesives: tissue tapes-phenolic hyaluronic acid hydrogel patches for off-the-shelf therapy (Adv.
Funct. Mater. 49/2019). Adv Funct Mater 2019;29:1970331. DOI
55. Choi S, Lee JS, Shin J, et al. Osteoconductive hybrid hyaluronic acid hydrogel patch for effective bone formation. J Control Release
2020;327:571-83. DOI
56. An S, Choi S, Min S, Cho S. Hyaluronic acid-based biomimetic hydrogels for tissue engineering and medical applications. Biotechnol
Bioproc E 2021;26:503-16. DOI
57. Kim KS, Park SJ, Yang JA, et al. Injectable hyaluronic acid-tyramine hydrogels for the treatment of rheumatoid arthritis. Acta
Biomater 2011;7:666-74. DOI PubMed
58. Kurisawa M, Chung JE, Yang YY, Gao SJ, Uyama H. Injectable biodegradable hydrogels composed of hyaluronic acid-tyramine
conjugates for drug delivery and tissue engineering. Chem Commun 2005:4312-4. DOI PubMed
59. Kim SD, Jin S, Kim S, Son D, Shin M. Tyramine-functionalized alginate-collagen hybrid hydrogel inks for 3D-bioprinting. Polymers
2022;14:3173. DOI PubMed PMC
60. Lee F, Chung JE, Kurisawa M. An injectable hyaluronic acid-tyramine hydrogel system for protein delivery. J Control Release
2009;134:186-93. DOI PubMed
61. Wang LS, Lee F, Lim J, et al. Enzymatic conjugation of a bioactive peptide into an injectable hyaluronic acid-tyramine hydrogel
system to promote the formation of functional vasculature. Acta Biomater 2014;10:2539-50. DOI PubMed
62. Lee F, Chung JE, Kurisawa M. An injectable enzymatically crosslinked hyaluronic acid- hydrogel system with independent tuning of
mechanical strength and gelation rate. Soft Matter 2008;4:880-7. DOI PubMed
63. Shin J, Choi EJ, Cho JH, et al. Three-dimensional electroconductive hyaluronic acid hydrogels incorporated with carbon nanotubes
and polypyrrole by catechol-mediated dispersion enhance neurogenesis of human neural stem cells. Biomacromolecules 2017;18:3060-
72. DOI
64. Kim S, Jang Y, Jang LK, et al. Electrochemical deposition of dopamine-hyaluronic acid conjugates for anti-biofouling bioelectrodes. J
Mater Chem B 2017;5:4507-13. DOI PubMed
65. Kim J, Kim S, Son D, Shin M. Phenol-hyaluronic acid conjugates: correlation of oxidative crosslinking pathway and adhesiveness.
Polymers 2021;13:3130. DOI PubMed PMC
66. Kim SH, Kim Y, Choi H, et al. Mechanically and electrically durable, stretchable electronic textiles for robust wearable electronics.
RSC Adv 2021;11:22327-33. DOI PubMed PMC
67. Song J, Kim Y, Kang K, Lee S, Shin M, Son D. Stretchable and Self-healable graphene-polymer conductive composite for wearable
EMG sensor. Polymers 2022;14:3766. DOI PubMed PMC
68. Park K, Kang K, Kim J, et al. Balanced coexistence of reversible and irreversible covalent bonds in a conductive triple polymeric
network enables stretchable hydrogels with high toughness and adhesiveness. ACS Appl Mater Interfaces 2022;14:56395-406. DOI
69. Lee S, Park K, Kum J, et al. Stretchable surface electrode arrays using an alginate/PEDOT:PSS-based conductive hydrogel for
conformal brain interfacing. Polymers 2022;15:84. DOI PubMed PMC
70. Park K, Choi H, Kang K, Shin M, Son D. Soft stretchable conductive carboxymethylcellulose hydrogels for wearable sensors. Gels
2022;8:92. DOI PubMed PMC
71. Kim Y, Song J, An S, Shin M, Son D. Soft liquid metal-based conducting composite with robust electrical durability for a wearable
electrocardiogram sensor. Polymers 2022;14:3409. DOI PubMed PMC
72. Sun JY, Zhao X, Illeperuma WR, et al. Highly stretchable and tough hydrogels. Nature 2012;489:133-6. DOI PubMed PMC
73. Ju J, Jin S, Kim S, et al. Addressing the shortcomings of polyphenol-derived adhesives: achievement of long shelf life for effective
hemostasis. ACS Appl Mater Interfaces 2022;14:25115-25. DOI
74. Oliva N, Shin M, Burdick JA. Editorial: special issue on advanced biomedical hydrogels. ACS Biomater Sci Eng 2021;7:3993-6. DOI
PubMed
75. Choi Y, Kang K, Son D, Shin M. Molecular rationale for the design of instantaneous, strain-tolerant polymeric adhesive in a
stretchable underwater human-machine interface. ACS Nano 2022;16:1368-80. DOI PubMed
76. Nguyen LTB, Hsu CC, Ye H, Cui Z. Development of an in situ injectable hydrogel containing hyaluronic acid for neural regeneration.
Biomed Mater 2020;15:055005. DOI
77. Moraes MR, Alves AC, Toptan F, et al. Glycerol/PEDOT:PSS coated woven fabric as a flexible heating element on textiles. J Mater
Chem C 2017;5:3807-22. DOI
78. Koizumi Y, Ohira M, Watanabe T, Nishiyama H, Tomita I, Inagi S. Synthesis of poly(3,4-ethylenedioxythiophene)-platinum and
poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) hybrid fibers by alternating current bipolar electropolymerization. Langmuir

