Page 136 - Read Online
P. 136

Page 18 of 19                            Kim et al. Soft Sci 2023;3:18  https://dx.doi.org/10.20517/ss.2023.08

               49.      Kim S, Choi H, Son D, Shin M. Conductive and adhesive granular alginate hydrogels for on-tissue writable bioelectronics. Gels
                   2023;9:167.  DOI  PubMed  PMC
               50.      Lee KY, Mooney DJ. Hydrogels for tissue engineering. Chem Rev 2001;101:1869-79.  DOI  PubMed
               51.      Dromel PC, Singh D, Andres E, et al. A bioinspired gelatin-hyaluronic acid-based hybrid interpenetrating network for the
                   enhancement of retinal ganglion cells replacement therapy. NPJ Regen Med 2021;6:85.  DOI  PubMed  PMC
               52.      Xing F, Zhou C, Hui D, et al. Hyaluronic acid as a bioactive component for bone tissue regeneration: Fabrication, modification,
                   properties, and biological functions. Nanotechno Rev 2020;9:1059-79.  DOI
               53.      Kim S, Shin M. Role of free catecholamine in thiol-ene crosslinking for hyaluronic acid hydrogels with high loading efficiency of
                   anticancer drugs. Tissue Eng Regen Med 2022;19:281-7.  DOI  PubMed  PMC
               54.      Shin J, Choi S, Kim JH, et al. Tissue adhesives: tissue tapes-phenolic hyaluronic acid hydrogel patches for off-the-shelf therapy (Adv.
                   Funct. Mater. 49/2019). Adv Funct Mater 2019;29:1970331.  DOI
               55.      Choi S, Lee JS, Shin J, et al. Osteoconductive hybrid hyaluronic acid hydrogel patch for effective bone formation. J Control Release
                   2020;327:571-83.  DOI
               56.      An S, Choi S, Min S, Cho S. Hyaluronic acid-based biomimetic hydrogels for tissue engineering and medical applications. Biotechnol
                   Bioproc E 2021;26:503-16.  DOI
               57.      Kim KS, Park SJ, Yang JA, et al. Injectable hyaluronic acid-tyramine hydrogels for the treatment of rheumatoid arthritis. Acta
                   Biomater 2011;7:666-74.  DOI  PubMed
               58.      Kurisawa M, Chung JE, Yang YY, Gao SJ, Uyama H. Injectable biodegradable hydrogels composed of hyaluronic acid-tyramine
                   conjugates for drug delivery and tissue engineering. Chem Commun 2005:4312-4.  DOI  PubMed
               59.      Kim SD, Jin S, Kim S, Son D, Shin M. Tyramine-functionalized alginate-collagen hybrid hydrogel inks for 3D-bioprinting. Polymers
                   2022;14:3173.  DOI  PubMed  PMC
               60.      Lee F, Chung JE, Kurisawa M. An injectable hyaluronic acid-tyramine hydrogel system for protein delivery. J Control Release
                   2009;134:186-93.  DOI  PubMed
               61.      Wang LS, Lee F, Lim J, et al. Enzymatic conjugation of a bioactive peptide into an injectable hyaluronic acid-tyramine hydrogel
                   system to promote the formation of functional vasculature. Acta Biomater 2014;10:2539-50.  DOI  PubMed
               62.      Lee F, Chung JE, Kurisawa M. An injectable enzymatically crosslinked hyaluronic acid- hydrogel system with independent tuning of
                   mechanical strength and gelation rate. Soft Matter 2008;4:880-7.  DOI  PubMed
               63.      Shin J, Choi EJ, Cho JH, et al. Three-dimensional electroconductive hyaluronic acid hydrogels incorporated with carbon nanotubes
                   and polypyrrole by catechol-mediated dispersion enhance neurogenesis of human neural stem cells. Biomacromolecules 2017;18:3060-
                   72.  DOI
               64.      Kim S, Jang Y, Jang LK, et al. Electrochemical deposition of dopamine-hyaluronic acid conjugates for anti-biofouling bioelectrodes. J
                   Mater Chem B 2017;5:4507-13.  DOI  PubMed
               65.      Kim J, Kim S, Son D, Shin M. Phenol-hyaluronic acid conjugates: correlation of oxidative crosslinking pathway and adhesiveness.
                   Polymers 2021;13:3130.  DOI  PubMed  PMC
               66.      Kim SH, Kim Y, Choi H, et al. Mechanically and electrically durable, stretchable electronic textiles for robust wearable electronics.
                   RSC Adv 2021;11:22327-33.  DOI  PubMed  PMC
               67.      Song J, Kim Y, Kang K, Lee S, Shin M, Son D. Stretchable and Self-healable graphene-polymer conductive composite for wearable
                   EMG sensor. Polymers 2022;14:3766.  DOI  PubMed  PMC
               68.      Park K, Kang K, Kim J, et al. Balanced coexistence of reversible and irreversible covalent bonds in a conductive triple polymeric
                   network enables stretchable hydrogels with high toughness and adhesiveness. ACS Appl Mater Interfaces 2022;14:56395-406.  DOI
               69.      Lee S, Park K, Kum J, et al. Stretchable surface electrode arrays using an alginate/PEDOT:PSS-based conductive hydrogel for
                   conformal brain interfacing. Polymers 2022;15:84.  DOI  PubMed  PMC
               70.      Park K, Choi H, Kang K, Shin M, Son D. Soft stretchable conductive carboxymethylcellulose hydrogels for wearable sensors. Gels
                   2022;8:92.  DOI  PubMed  PMC
               71.      Kim Y, Song J, An S, Shin M, Son D. Soft liquid metal-based conducting composite with robust electrical durability for a wearable
                   electrocardiogram sensor. Polymers 2022;14:3409.  DOI  PubMed  PMC
               72.      Sun JY, Zhao X, Illeperuma WR, et al. Highly stretchable and tough hydrogels. Nature 2012;489:133-6.  DOI  PubMed  PMC
               73.      Ju J, Jin S, Kim S, et al. Addressing the shortcomings of polyphenol-derived adhesives: achievement of long shelf life for effective
                   hemostasis. ACS Appl Mater Interfaces 2022;14:25115-25.  DOI
               74.      Oliva N, Shin M, Burdick JA. Editorial: special issue on advanced biomedical hydrogels. ACS Biomater Sci Eng 2021;7:3993-6.  DOI
                   PubMed
               75.      Choi Y, Kang K, Son D, Shin M. Molecular rationale for the design of instantaneous, strain-tolerant polymeric adhesive in a
                   stretchable underwater human-machine interface. ACS Nano 2022;16:1368-80.  DOI  PubMed
               76.      Nguyen LTB, Hsu CC, Ye H, Cui Z. Development of an in situ injectable hydrogel containing hyaluronic acid for neural regeneration.
                   Biomed Mater 2020;15:055005.  DOI
               77.      Moraes MR, Alves AC, Toptan F, et al. Glycerol/PEDOT:PSS coated woven fabric as a flexible heating element on textiles. J Mater
                   Chem C 2017;5:3807-22.  DOI
               78.      Koizumi Y, Ohira M, Watanabe T, Nishiyama H, Tomita I, Inagi S. Synthesis of poly(3,4-ethylenedioxythiophene)-platinum and
                   poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) hybrid fibers by alternating current bipolar electropolymerization. Langmuir
   131   132   133   134   135   136   137   138   139   140   141